ECE 811 - SOFTWARE ENGINEERING

FINITE STATE MACHINE IN SOFTWATE ENGINEERING -STUDY GUIDE/REVISION

OBJECTIVE

Master the design, implementation, and application of FSMs for robust software systems.

1. INTRODUCTION TO FINITE STATE MACHINES

1. Definition

A Finite State Machine (FSM) is a computational model defining a system’s
behaviour using a finite number of states, transitions between states triggered by
events, and associated actions.

2. Purpose of FSM in Software Engineering

o Simplify complex logic (e.g., User Interface(UI) workflows, game Al, network
protocols).

o Ensure predictable behaviour and easier debugging.

o Model real-world processes (e.g., vending machines, traffic lights).

2. CORE CONCEPTS IN FINITE STATE MACHINES

1. States
o Distinct configurations of the system (e.g., Idle, Processing, Success, Error).
o Inmitial State: Entry point (e.g., Idle).
o Final/Accepting State(s): Terminal states (e.g., Success).

2. Transitions

o Directed change from one state to another triggered by an event (e.g.,
onButtonClick).

3. Events

o Inputs or conditions activating transitions (e.g., user actions, system
signals).

4. Actions

o Operations executed during transitions (e.g., validateInput(),
sendRequest()).

3. TYPES OF FINITE STATE MACHINES

Type Key Characteristics Use Cases

Deterministic One transition per event/state pair. Protocol parsing, input

(DFA) Predictable. validation.

Non-Deterministic | Multiple possible transitions per Regex engines, complex

(NFA) event/state. Al

Mealy Machine Actions depend on transitions Network controllers,

(events + current state). robotics.

Moore Machine Actions depend solely on states. Simple UI controllers,

hardware.

4. MODELLING FINITE STATE MACHINES

1. State Diagrams (Visual)
o Use circles for states and arrows for transitions.
o Label transitions: Event [Guard] / Action.

o Example:

[Idle] -- buttonClick — [Processing] / validatelnput()
[Processing] -- success — [Success| / showMessage()

2. State Transition Tables (Tabular)

Current State | Event Next State | Action
Idle buttonClick | Processing | Validate Input
Processing success Success Show Message

5. IMPLEMENTING FSMs IN CODE

1. State Pattern (OOP)
o Define an abstract State class/interfaced with event handlers.
o Concrete states (e.g., IdleState, ProcessingState) implement behavior.

o Context class holds the current state.

// Example in Java
interface State {

void handleButtonClick (Context context);
}

class IdleState implements State {

public void handleButtonClick (Context context) {

validateInput () ;

context.setState (new ProcessingState());

}
2. State Tables (Data-Driven)

o Use a 2D array or dictionary mapping (currentState, event) to (nextState,

action).

o Ideal for large FSMs (e.g., game Al):

Python Example

fsm table = {
('Idle', 'button click'): ('Processing', validate input),

('Processing', 'success'): ('Success', show message),

}

3. Libraries:

o Python: transitions, pytransitions.
o JavaScript: xstate, machina.js.

o C#: Stateless.

6. PRACTICAL EXAMPLES

1. User Interface (UI) Workflow
States: LOGIN_SCREEN — INPUT_VERIFICATION — HOME_SCREEN.

o

o Events: submit_form, validation_success.

2. Payment Gateway
States: PAYMENT_INITIATED — PROCESSING — SUCCESS/FAILED.

@)
3. Game Al (Enemy Behavior)
States: PATROL — CHASE — ATTACK — RETREAT.

o

o Events: player_spotted, health_low.

7. ADVANTAGES & CHALLENGES

1. Pros
o Clarity in complex logic.
o Easy to extend/modify states.

o Reusable across components.

2. Cons

o State explosion: Too many states become unmanageable (use hierarchical
FSMs).

o Not suitable for concurrency (consider statecharts or Petri nets).

8. ADVANCED TOPICS

1. Hierarchical FSMs

o Nest FSMs within states (e.g., GameLevel state contains Paused/Running
sub-states).

2. Statecharts

o Extend FSMs with concurrency, history, and compound states.
3. Testing FSMs

o Validate all transitions via unit tests.

o Tools: cucumber (Gherkin scenarios), model checkers.

9. EXERCICES

1. Sketch a state diagram for a real-world system (e.g., microwave oven).
2. Code a simple FSM using the state pattern in your preferred language.

3. Explore xstate or transitions to build FSMs declaratively.

