

ECE 811 – SOFTWARE ENGINEERING

FINITE STATE MACHINE IN SOFTWATE ENGINEERING –STUDY GUIDE/REVISION

OBJECTIVE

Master the design, implementation, and application of FSMs for robust software systems.

1. INTRODUCTION TO FINITE STATE MACHINES

1. Definition

A Finite State Machine (FSM) is a computational model defining a system’s

behaviour using a finite number of states, transitions between states triggered by

events, and associated actions.

2. Purpose of FSM in Software Engineering

o Simplify complex logic (e.g., User Interface(UI) workflows, game AI, network

protocols).

o Ensure predictable behaviour and easier debugging.

o Model real-world processes (e.g., vending machines, traffic lights).

2. CORE CONCEPTS IN FINITE STATE MACHINES

1. States

o Distinct configurations of the system (e.g., Idle, Processing, Success, Error).

o Initial State: Entry point (e.g., Idle).

o Final/Accepting State(s): Terminal states (e.g., Success).

2. Transitions

o Directed change from one state to another triggered by an event (e.g.,

onButtonClick).

3. Events

o Inputs or conditions activating transitions (e.g., user actions, system

signals).

4. Actions

o Operations executed during transitions (e.g., validateInput(),

sendRequest()).

3. TYPES OF FINITE STATE MACHINES

Type Key Characteristics Use Cases

Deterministic

(DFA)

One transition per event/state pair.

Predictable.

Protocol parsing, input

validation.

Non-Deterministic

(NFA)

Multiple possible transitions per

event/state.

Regex engines, complex

AI.

Mealy Machine Actions depend on transitions

(events + current state).

Network controllers,

robotics.

Moore Machine Actions depend solely on states. Simple UI controllers,

hardware.

4. MODELLING FINITE STATE MACHINES

1. State Diagrams (Visual)

o Use circles for states and arrows for transitions.

o Label transitions: Event [Guard] / Action.

o Example:

[Idle] -- buttonClick → [Processing] / validateInput()

[Processing] -- success → [Success] / showMessage()

2. State Transition Tables (Tabular)

Current State Event Next State Action

Idle buttonClick Processing Validate Input

Processing success Success Show Message

5. IMPLEMENTING FSMs IN CODE

1. State Pattern (OOP)

o Define an abstract State class/interfaced with event handlers.

o Concrete states (e.g., IdleState, ProcessingState) implement behavior.

o Context class holds the current state.

// Example in Java

interface State {

 void handleButtonClick(Context context);

}

class IdleState implements State {

 public void handleButtonClick(Context context) {

 validateInput();

 context.setState(new ProcessingState());

 }

}

2. State Tables (Data-Driven)

o Use a 2D array or dictionary mapping (currentState, event) to (nextState,

action).

o Ideal for large FSMs (e.g., game AI):

Python Example

fsm_table = {

 ('Idle', 'button_click'): ('Processing', validate_input),

 ('Processing', 'success'): ('Success', show_message),

}

3. Libraries:

o Python: transitions, pytransitions.

o JavaScript: xstate, machina.js.

o C#: Stateless.

6. PRACTICAL EXAMPLES

1. User Interface (UI) Workflow

o States: LOGIN_SCREEN → INPUT_VERIFICATION → HOME_SCREEN.

o Events: submit_form, validation_success.

2. Payment Gateway

o States: PAYMENT_INITIATED → PROCESSING → SUCCESS/FAILED.

3. Game AI (Enemy Behavior)

o States: PATROL → CHASE → ATTACK → RETREAT.

o Events: player_spotted, health_low.

7. ADVANTAGES & CHALLENGES

1. Pros

o Clarity in complex logic.

o Easy to extend/modify states.

o Reusable across components.

2. Cons

o State explosion: Too many states become unmanageable (use hierarchical

FSMs).

o Not suitable for concurrency (consider statecharts or Petri nets).

8. ADVANCED TOPICS

1. Hierarchical FSMs

o Nest FSMs within states (e.g., GameLevel state contains Paused/Running

sub-states).

2. Statecharts

o Extend FSMs with concurrency, history, and compound states.

3. Testing FSMs

o Validate all transitions via unit tests.

o Tools: cucumber (Gherkin scenarios), model checkers.

9. EXERCICES

1. Sketch a state diagram for a real-world system (e.g., microwave oven).

2. Code a simple FSM using the state pattern in your preferred language.

3. Explore xstate or transitions to build FSMs declaratively.

