

ECE 811 – SOFTWARE ENGINEERING

WEEK 1: INTRODUCTION TO PYTHON - STUDY GUIDE/REVISION

1. WHY SHOULD ELECTRICAL ENGINEERS LEARN PYTHON?

1.1 Ubiquity & Ecosystem

o Massive Libraries: Python boasts extensive libraries critical for EE:

▪ NumPy/SciPy: Fundamental for numerical computing, linear algebra, signal
processing, optimization, and more (replacing much of MATLAB's core
functionality).

▪ Matplotlib/Seaborn: Essential for data visualization (plots, graphs, spectra,
eye diagrams).

▪ Pandas: Powerful data manipulation and analysis (perfect for sensor data, test
logs, simulation results).

▪ Scikit-learn: Machine learning for applications like predictive maintenance,
signal classification, anomaly detection.

▪ PyVISA: Control test & measurement equipment (oscilloscopes, power
supplies, spectrum analyzers) over GPIB, USB, Ethernet.

▪ PySerial: Communicate with microcontrollers, sensors, and embedded
systems over serial/UART.

▪ SPICE Simulators (ngspice, PySpice, QucsPy): Interface with or control
circuit simulators.

▪ Control Systems (Python-Control): Design and analyze control systems.

o Active Community: Vast resources, tutorials, and solutions available online.

1.2 Automation & Scripting

o Test Automation: Automate repetitive lab tasks (setting up instruments, running tests,
collecting data). Saves massive time and reduces errors.

o Data Processing: Automate analysis of large datasets from simulations, lab
measurements, or field deployments.

o Report Generation: Automatically generate reports and visualizations from
test/simulation data.

o File Manipulation: Batch process simulation files, configuration files, log files.

1.3 Prototyping & Simulation

o Algorithm Development: Quickly prototype and test signal processing algorithms
(filters, FFTs, modulation schemes), control algorithms, or communication
protocols before committing to hardware or lower-level code (C/C++).

o System Modelling: Model complex systems (e.g., power systems, communication
channels, control loops) for analysis and simulation.

o Faster Iteration: Python's ease of use allows for rapid iteration and exploration of
ideas.

1.4 Data Analysis & Visualization

o Making Sense of Data: Python excels at cleaning, processing, analysing, and
extracting insights from this data.

o Clear Communication: Create publication-quality plots and interactive dashboards to
visualize results and communicate findings effectively to colleagues or stakeholders.

1.5 Embedded Systems & IoT

o MicroPython/CircuitPython: Python variants run directly on resource-constrained
microcontrollers (ESP32, Raspberry Pi Pico, many ARM Cortex-M). Great for rapid
prototyping, sensor interfacing, and simpler IoT applications.

o Firmware Testing/Control: Script interactions with embedded devices during
development and testing.

o IoT Backends: Develop server-side logic, data processing pipelines, and APIs for IoT
applications.

1.6 Replacing Costly Tools

o MATLAB Alternative: While MATLAB/Simulink remain important in some niches,
Python (with NumPy, SciPy, Matplotlib) provides a powerful, free and open-
source alternative for many core computational, analysis, and plotting tasks. This is
especially valuable for students, startups, and cost-conscious projects.

1.7 Machine Learning & AI

o Dominant Language: Python is the undisputed leader in ML/AI libraries (TensorFlow,
PyTorch, Keras, Scikit-learn).

o EE Applications: ML/AI is revolutionizing EE: signal processing (denoising,
classification), computer vision for inspection, predictive maintenance, smart grid
optimization, RF fingerprinting, autonomous systems. Python is the gateway.

1.8 Career Advancement & Marketability

o Highly Sought Skill: Python proficiency is consistently ranked as one of the top skills
employers seek in engineers across all disciplines.

o Versatility: Opens doors to roles in R&D, test engineering, data science, embedded
systems, automation, controls, power systems, communications, and more.

o Collaboration: Facilitates collaboration with software engineers, data scientists, and
other professionals who commonly use Python.

1.9 Ease of Learning & Use

o Beginner-Friendly: Python has a clear, readable syntax and is generally easier to learn
than languages like C, C++, or even Java, allowing EEs to focus on solving engineering
problems rather than intricate language details.

2. SETTING UP YOUR ENVIRONMENT

1. Install Python: python.org

o Check installation: python --version

2. Code Editors:

o Beginner-friendly: Thonny, IDLE

o Advanced: VS Code (with Python extension), PyCharm

3. Online Sandboxes: Replit.com, Google Colab (no installation needed)

3. PYTHON FUNDAMENTALS CHEAT SHEET

Concept Syntax Example Explanation

Variables name = "Alice" No declaration; dynamic typing

Data Types int: 42 float: 3.14 bool: True Automatic type inference

Strings text = "Hello" + "World" Immutable; f"{name} is {age}" for f-strings

Lists fruits = ["apple", "banana"] Mutable; ordered collection

Tuples point = (3, 5) Immutable; faster than lists

Dictionaries person = {"name": "Bob", "age": 30} Key-value pairs; unordered

Conditionals if x > 10: print("High") Use elif and else

Loops for fruit in fruits: print(fruit) Iterate through sequences

while count < 5: count += 1 Use break/continue to control flow

Functions def greet(name): return f"Hello {name}" Use def to define; return for output

4. CORE CONCEPTS DEEP DIVE

4.1. Variables & Data Types

Numeric types

age = 25 # int

height = 5.9 # float

Text & Booleans

name = "Charlie" # str

is_student = True # bool

Type conversion

str(age) # "25"

https://www.python.org/downloads/

int("100") # 100

4.2. Control Flow

If-Elif-Else

temperature = 28

if temperature > 30:

 print("Hot")

elif 20 <= temperature <= 30:

 print("Pleasant") # This executes

else:

 print("Cold")

For Loop with range

for i in range(3): # 0, 1, 2

 print(i)

While Loop

count = 3

while count > 0:

 print(count)

 count -= 1 # 3, 2, 1

4.3. Functions

Basic function

def square(n):

 return n * n

Default parameters

def greet(name, message="Hello"):

 return f"{message}, {name}"

greet("Alice") # "Hello, Alice"

4.4. Data Structures

List operations

colors = ["red", "green"]

colors.append("blue") # Add item

colors[0] = "crimson" # Modify

colors.pop() # Remove last

Dictionary usage

student = {"name": "Emma", "id": 101}

student["grade"] = "A" # Add new key

student.keys() # dict_keys(['name', 'id', 'grade'])

5. ESSENTIAL PYTHON LIBRARIES

Library Purpose Install Command

NumPy Numerical computing pip install numpy

Pandas Data manipulation & analysis pip install pandas

Matplotlib Data visualization pip install matplotlib

Requests HTTP requests pip install requests

BeautifulSoup Web scraping pip install beautifulsoup4

