ECE 811 - SOFTWARE ENGINEERING

WEEK 1: INTRODUCTION TO PYTHON - STUDY GUIDE/REVISION

1. WHY SHOULD ELECTRICAL ENGINEERS LEARN PYTHON?

1.1 Ubiquity & Ecosystem
o Massive Libraries: Python boasts extensive libraries critical for EE:

* NumPy/SciPy: Fundamental for numerical computing, linear algebra, signal
processing, optimization, and more (replacing much of MATLAB's core
functionality).

= Matplotlib/Seaborn: Essential for data visualization (plots, graphs, spectra,
eye diagrams).

= Pandas: Powerful data manipulation and analysis (perfect for sensor data, test
logs, simulation results).

= Scikit-learn: Machine learning for applications like predictive maintenance,
signhal classification, anomaly detection.

= PyVISA: Control test & measurement equipment (oscilloscopes, power
supplies, spectrum analyzers) over GPIB, USB, Ethernet.

= PySerial: Communicate with microcontrollers, sensors, and embedded
systems over serial/UART.

= SPICE Simulators (ngspice, PySpice, QucsPy): Interface with or control
circuit simulators.

= Control Systems (Python-Control): Design and analyze control systems.
o Active Community: Vast resources, tutorials, and solutions available online.
1.2 Automation & Scripting

o Test Automation: Automate repetitive lab tasks (setting up instruments, running tests,
collecting data). Saves massive time and reduces errors.

o Data Processing: Automate analysis of large datasets from simulations, lab
measurements, or field deployments.

o Report Generation: Automatically generate reports and visualizations from
test/simulation data.

o File Manipulation: Batch process simulation files, configuration files, log files.
1.3 Prototyping & Simulation

o Algorithm Development: Quickly prototype and test signal processing algorithms
(filters, FFTs, modulation schemes), control algorithms, or communication
protocols before committing to hardware or lower-level code (C/C++).

o System Modelling: Model complex systems (e.g., power systems, communication
channels, control loops) for analysis and simulation.

o Faster Iteration: Python's ease of use allows for rapid iteration and exploration of
ideas.

1.4 Data Analysis & Visualization

o Making Sense of Data: Python excels at cleaning, processing, analysing, and
extracting insights from this data.

o Clear Communication: Create publication-quality plots and interactive dashboards to
visualize results and communicate findings effectively to colleagues or stakeholders.

1.5 Embedded Systems & loT

o MicroPython/CircuitPython: Python variants run directly on resource-constrained
microcontrollers (ESP32, Raspberry Pi Pico, many ARM Cortex-M). Great for rapid
prototyping, sensor interfacing, and simpler loT applications.

o Firmware Testing/Control: Script interactions with embedded devices during
development and testing.

o loT Backends: Develop server-side logic, data processing pipelines, and APls for loT
applications.

1.6 Replacing Costly Tools

o MATLAB Alternative: While MATLAB/Simulink remain important in some niches,
Python (with NumPy, SciPy, Matplotlib) provides a powerful, free and open-
source alternative for many core computational, analysis, and plotting tasks. This is
especially valuable for students, startups, and cost-conscious projects.

1.7 Machine Learning & Al

o Dominant Language: Python is the undisputed leader in ML/Al libraries (TensorFlow,
PyTorch, Keras, Scikit-learn).

o EE Applications: ML/Al is revolutionizing EE: signal processing (denoising,
classification), computer vision for inspection, predictive maintenance, smart grid
optimization, RF fingerprinting, autonomous systems. Python is the gateway.

1.8 Career Advancement & Marketability

o Highly Sought Skill: Python proficiency is consistently ranked as one of the top skills
employers seek in engineers across all disciplines.

o Versatility: Opens doors to roles in R&D, test engineering, data science, embedded
systems, automation, controls, power systems, communications, and more.

o Collaboration: Facilitates collaboration with software engineers, data scientists, and
other professionals who commonly use Python.

1.9 Ease of Learning & Use

o Beginner-Friendly: Python has a clear, readable syntax and is generally easier to learn
than languages like C, C++, or even Java, allowing EEs to focus on solving engineering
problems rather than intricate language details.

2. SETTING UP YOUR ENVIRONMENT

1. Install Python: python.org
o Checkinstallation: python --version
2. Code Editors:

o Beginner-friendly: Thonny, IDLE

o Advanced: VS Code (with Python extension), PyCharm

3. Online Sandboxes: Replit.com, Google Colab (no installation needed)

3. PYTHON FUNDAMENTALS CHEAT SHEET

Concept Syntax Example Explanation

Variables name = "Alice" No declaration; dynamic typing

Data Types int: 42 float: 3.14 bool: True Automatic type inference

Strings text ="Hello" + "World" Immutable; f"{name} is {age}" for f-strings
Lists fruits = ["apple", "banana"] Mutable; ordered collection

Tuples point = (3, 5) Immutable; faster than lists

Dictionaries | person ={"name": "Bob", "age": 30}

Key-value pairs; unordered

Conditionals | if x> 10: print("High")

Use elif and else

Loops for fruit in fruits: print(fruit) Iterate through sequences
while count < 5: count +=1 Use break/continue to control flow
Functions def greet(name): return f"Hello {name}" | Use def to define; return for output

4. CORE CONCEPTS DEEP DIVE

4.1. Variables & Data Types
Numeric types

age=25 #int
height=5.9 #float
Text & Booleans

str

name = "Charlie"

is_student = True # bool

Type conversion

str(age) #"25"

https://www.python.org/downloads/

int("100") #100

4.2. Control Flow

If-Elif-Else

temperature = 28

if temperature > 30:
print("Hot")

elif 20 <=temperature <= 30:
print("Pleasant") # This executes

else:

print("Cold")

For Loop with range
foriinrange(3): #0, 1,2

print(i)

While Loop

count=3

while count > 0:
print(count)
count-=1 #3,2, 1

4.3. Functions

Basic function

def square(n):

returnn*n

Default parameters
def greet(name, message="Hello"):

return f"{message}, {name}"

greet("Alice") # "Hello, Alice"
4.4. Data Structures
List operations

colors =["red", "green"]

colors.append("blue") #Add item
colors[0] ="crimson" # Modify

colors.pop() # Remove last

Dictionary usage
student ={"name": "Emma", "id": 101}
student["grade"] ="A" # Add new key

student.keys() #dict_keys(['name, 'id; grade’])

5. ESSENTIAL PYTHON LIBRARIES

Library Purpose Install Command
NumPy Numerical computing pip install numpy
Pandas Data manipulation & analysis | pip install pandas
Matplotlib Data visualization pip install matplotlib
Requests HTTP requests pip install requests
BeautifulSoup | Web scraping pip install beautifulsoup4

