ECE 811 - SOFTWARE ENGINEERING

WEEK 1: INTRODUCTION TO SOFTWARE ENGINEERING - STUDY GUIDE/REVISION

. FUNDAMENTAL CONCEPTS

What is Software Engineering?

o Software engineering is the systematic application of engineering principles to
software design, development, and maintenance.

o Goals: Reliable, efficient, scalable, and maintainable software.

[

Computer Science Software Engineering
The study of principles and how Software Engineer i; a branch of
computers work, mostly from the Computer Science.
theoretical and mathematical ‘ o
perspective It applies the principle of software

engineering to the design, development,
maintenance, testing and evaluation of
computer software

Figure 1. Computer science and Software engineering

2. What is Software Crisis refers to the challenges faced in developing efficient and useful

computer programs due to increasing complexity and demands. Factors like poor project
management, inadequate training, and low productivity contribute to this crisis. Addressing
these issues through systematic approaches like software engineering, with a focus on budget
control, quality, timeliness, and skilled workforce, can mitigate the impact of the crisis.

Industrial strength software system is software designed and built to be exceptionally
reliable, robust, and scalable, capable of handling demanding workloads and critical
operations within an organization.

Key Principles

Key principles of software engineering include modularity, abstraction, encapsulation,
reusability, and maintainability. These principles guide the development of software that is
reliable, maintainable, and scalable. They also emphasize efficient project management,
collaboration, and adherence to best practices throughout the software lifecycle. These
features are expounded below.

a) Abstraction: Hiding of unnecessary implementation details and exposing only the
essential functionality. This simplifies usage and allows for changes without affecting
other parts of the system.

b) Modularity: Breaking down a complex system into smaller, independent, and
manageable modules. This allows for easier development, testing, and maintenance..



c)

d)

e)

Encapsulation: Bundling data and methods that operate on that data within a single
unit (like a class). This protects data from unintended external access and

modification.

Reusability: Designing components that can be used in multiple contexts or projects,

saving time and effort.

Maintainability: Designing software that is easy to understand, modify, and debug.
This includes using clean code, proper documentation, and following established

design patterns.

Testing: Verifying that the software meets requirements and is free of defects. This

includes unit testing, integration testing, and system testing.

5. Software Quality Attributes

. SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

o

Correctness
Robustness
Performance
Maintainability
Usability

Scalability

Model Key Idea Pros Cons
Waterfall | Linear phases (Requirements > Simple, structured Inflexible; late
Maintenance) feedback
Iterative | Cycles of prototyping + refinement Early feedback; risk Scope creep risk
reduction
Agile Incremental delivery in sprints Adaptable; customer- Less documentation
centric
DevOps | Integrates development + Faster deployment; Cultural shift
operations automation required

Agile Manifesto Values: Check the website

[I. CORE PROCESSES

1.

Requ
O
O

o

irements Engineering

Elicitation: Interviews, surveys, user stories.

Specification: SRS document (functional/non-functional reqgs).

Validation: Prototyping, feasibility analysis.

2. Software Design



https://agilemanifesto.org/

o Architectural Patterns:
= MVC (Model-View-Controller)
= (Client-Server, Microservices, Layered
o Design Patterns: Singleton, Factory, Observer (Gang of Four).
o UML Diagrams: Use case, class, sequence diagrams.
3. Implementation & Version Control
o Coding Standards: Readability, naming conventions.
o Git Essentials: commit, branch, merge, pull request.
o Refactoring: Improving code without changing behavior.
4. Testing & QA
o Levels: Unit > Integration > System > Acceptance.
o Techniques:
= White-box (code structure) X Black-box (functionality)
= Automated testing (JUnit, Selenium).
o CI/CD: Jenkins, GitHub Actions.
5. Maintenance

o Types: Corrective (bug fixes), Adaptive (OS updates), Perfective (features), Preventive
(optimization).

o Legacy Systems: Challenges in maintaining outdated software.

IV. PROJECT MANAGEMENT
1. Team Roles
o Product Owner
o Scrum Master
o Developers
o QAEngineers.
2. Estimation Techniques
o COCOMO model
o Planning Poker X Function Points.
3. Risk Management
o ldentify > Analyze > Plan > Monitor.

4. Tools

o lira (issue tracking) X Trello (kanban) X Slack (communication).



V. SOFTWARE QUALITY & ETHICS
1. Quality Assurance
o Code reviews X Static analysis (SonarQube) X ISO/IEC 9126 standards.
2. Metrics
o Cyclomatic complexity
o Code coverage
o Bugdensity.
3. Professional Ethics

o ACM/IEEE Code of Ethics: Privacy, intellectual property, social responsibility.

VI. MODERN PRACTICES

1. Cloud-Native Development

o Containers (Docker) X Orchestration (Kubernetes).
2. AlinSE

o Automated code generation X Bug prediction.
3. Secure Development

o OWASP Top 10

o DevSecOps integration.



