ECE 811 - SOFTWARE ENGINEERING

STRUCTURED PROGRAMMING - BEGINNERS’S STUDY GUIDE/REVISION

1. INTRODUCTION TO STRUCTURED PROGRAMMING
e Definition

Structured programming is a programming paradigm that emphasizes organizing code into logical
blocks or modules, using control flow constructs like sequencing, selection (if/else), and iteration
(loops), to improve code clarity, reliability, and maintainability.

Structured programming discourages the use of GO TO statements and promotes the use of
functions or subroutines for modularity.

¢ Historical Context:
o Developed in the 1960s (Dijkstra, Bohm, Jacopini).
o Response to "spaghetti code" in early programming (GOTO statements).
e Core Principle:
Top-down design - break problems into smaller, manageable modules/functions.
e Structured Programming Languages

While any language can be used in a structured manner, some languages are designed with
features that support and encourage structured programming practices.

Examples include Pascal, Ada, C, C++, Java, and Python.

2. CORE CONTROL STRUCTURES IN STRUCTURED PROGRAMMING

Three fundamental building blocks:
1. Sequence

o Linear execution of statements in order.
Example:

python

a=>5

b = 10

sum = a + b # Executes line-by-line
2. Selection (Decision-Making)

o Choose paths with if, else, switch.
Example:



3.

if (score >= 90) {
grade = 'A';

} else if (score >= 80) {

grade = 'B';
} else {
grade = 'F';

}
Iteration (Loops)

o Repeat actions with for, while, do-while.
Example:

Jjava

for (int i = 0; 1 < 5; i++) {

System.out.println(i); // Prints 0 to 4

3. KEY PRINCIPLES OF STRUCTURED PROGRAMMING

Single Entry/Single Exit: Each control structure has one entry and one exit point (no goto).

Modularity: Divide programs into functions/procedures.
o Each module should:
= Perform one specific task
= Bereusable
= Beindependently testable
Hierarchy: Organize modules in layers (high-level > low-level details).

Local Variables: Limit variable scope to where they’re used.

4. BENEFITS OF STRUCTURED PROGRAMMING

Readability: Code is easier to understand and debug.

Maintainability: Changes affect isolated modules.

Reduced Errors: 50-90% fewer bugs vs. unstructured code (historical studies).

Reusability: Functions can be repurposed.

Verifiability: Easier to prove correctness mathematically.



5. STRUCTURED VS. UNSTRUCTURED PROGRAMMING

FEATURE STRUCTURED UNSTRUCTURED
Control Flow | if, loops, functions GOTO jumps
Readability | High (linear flow) Low (jumps create tangles)

Debugging Easier (predictable paths) | Harder (unpredictable paths)

Modularity Enforced Ad-hoc

Example C, Java, Python Early BASIC, Early FORTRAN, Assembly

6. STEP-BY-STEP PROBLEM SOLVING

1. Understand the problem: Define inputs/outputs.

2. Top-down design: Break into sub-problems.

3. Pseudocode: Outline logic in plain English.

4. Implement modules: Write functions for each sub-problem.
5. Testincrementally: Validate each module before integration.

Example: Calculate Factorial
Pseudocode:

function factorial (n):
if n <= 1 return 1
else return n * factorial (n-1)
Python Implementation:
def factorial (n):
if n <= 1:
return 1
else:

return n * factorial (n-1)

7. BEST PRACTICES

e Avoid Deep Nesting: Max 3-4 levels of if/loop nesting.

¢ Function Length: Keep functions short (< 30 lines).

e Meaningful Names: Use calculateTax() instead of func1().

o Comments: Explain why, not what (code should be self-documenting).

¢ Error Handling: Validate inputs, handle edge cases.



8. COMMON PITFALLS TO AVOID

Global Variables: Cause unintended side effects.
Long Functions: Hard to debug/reuse.

Nested Loops: Can often be split into functions.

Ignoring Edge Cases: Test with 0, negative numbers, empty inputs.

9. STUDY TIPS

Flashcards:
Front: "What are the 3 control structures?"
Back: Sequence, Selection, lteration

Diagram Flowcharts: Map out program logic visually.

Code Review: Analyse open-source projects (e.g., GitHub) for structure.

Practice: Solve problems on LeetCode/HackerRank using structured design.

10. Sample Exam Questions

Convert this unstructured code to structured:

Unstructured - BASIC

10 INPUT X

20 IF X > 50 GOTO 50
30 PRINT "FAIL"

40 GOTO 60

50 PRINT "PASS"

60 END

Structured Solution: Python

X = 1int (input ())
if x > 50:

print ("PASS")
else:

print ("FAIL")

2. Whyis modularity important?

> Isolates errors, enables reuse, simplifies collaboration.

3. Write a structured function to find max in a list:

Using C language:
int findMax (int arr[],

int max = arr[0];

int size) {



for (int 1 = 1; 1 < size; i++)
if (arr[i] > max) {

max = arr[i];

}

return max;



