

ECE 811 – SOFTWARE ENGINEERING

STRUCTURED PROGRAMMING – BEGINNERS’S STUDY GUIDE/REVISION

SECTION 1: CORE CONCEPTS

1. What defines "structured programming"?
a) Using only machine code
b) Exclusive focus on object-oriented design
c) Programs built using sequence, selection, iteration
d) Prioritizing low-level memory management
Explanation: Structured programming emphasizes three control structures without
unrestricted GOTO.

2. The Böhm–Jacopini theorem proved that any program can be written using:
a) Objects and methods
b) Sequence, selection, iteration
c) Recursion only
d) Parallel threads
Explanation: This 1966 theorem established the theoretical foundation for structured
programming.

3. True/False: Modularity encourages dividing programs into independent, reusable
functions.
Answer: True
Explanation: Modularity is a core principle of structured programming.

4. Which control structure is demonstrated here?

python

total = 0

for i in range(1, 6):

 total += i

a) Sequence
b) Selection
c) Iteration
d) Recursion
Explanation: The for loop repeats the addition operation.

5. The "single entry/single exit" principle means:
a) Programs should have one input/output
b) Functions should have one entry and exit point
c) Variables must be initialized once
d) Loops must run exactly once
Explanation: This avoids complex control flows like multiple returns.

SECTION 2: CONTROL STRUCTURES

6. Which is NOT a valid selection structure?
a) if-else
b) switch-case
c) goto label
d) Ternary operator
Explanation: goto violates structured programming principles.

7. Convert this unstructured code to structured:

10: IF X > 0 GOTO 30

20: PRINT "Negative"

25: GOTO 40

30: PRINT "Positive"

40: END

Answer:

if x > 0:

 print("Positive")

else:

 print("Negative")

Explanation: Removed GOTO using standard selection.

8. What output results from this structured code?

C-language

int a = 5;

while (a > 0) {

 printf("%d ", a);

 a--;

}

a) 5 4 3 2 1
b) 5 4 3 2 1 0
c) 5 4 3 2
d) Infinite loop
Explanation: Loop runs for a=5,4,3,2,1 (stops when a=0).

9. True/False: Deeply nested if-statements violate structured programming best practices.
Answer: True
Explanation: Deep nesting reduces readability; refactor into functions.

SECTION 3: MODULARITY & DESIGN

10. Ideal function length in structured programming is:
a) < 10 lines
b) < 30 lines
c) 50-100 lines
d) No limit
Explanation: Shorter functions enhance readability and maintainability.

11. Top-down design involves:
a) Starting with hardware specs
b) Decomposing problems into sub-tasks
c) Optimizing for speed first
d) Writing tests last
Explanation: Break complex problems into simpler modules.

12. Which function violates modularity?

python

Option A

def calc_tax(income):

 rate = 0.2

 return income * rate

Option B

def process_data():

 global raw_data # Uses global variable

 # ... 40 lines of code ...

Answer: Option B
Explanation: Relies on global state and is too long.

13. Pseudocode for a modular design should emphasize:
a) Task decomposition
b) Variable naming conventions
c) Memory addresses
d) Syntax details
Explanation: Focuses on logical structure, not implementation.

SECTION 4: BENEFITS & PITFALLS

14. Key benefit of structured programming:
a) Faster execution
b) Easier debugging
c) Lower memory usage
d) Automatic parallelization
Explanation: Linear flow simplifies error tracing.

15. Common pitfall:
a) Too many small functions
b) Overusing global variables
c) Avoiding comments
d) Using loops
Explanation: Globals create hidden dependencies.

16. True/False: Structured programming eliminates all bugs.
Answer: False
Explanation: It reduces errors but doesn’t eliminate them.

Section 5: Advanced Concepts

17. Structured programming influenced:
a) Quantum computing
b) Object-oriented programming
c) Analog circuits
d) Blockchain
Explanation: OOP extends structured concepts with encapsulation.

18. Dijkstra’s paper "Go To Statement Considered Harmful" argued:
a) GOTO improves efficiency
b) GOTO creates unmaintainable code
c) All loops should use GOTO
d) GOTO is essential for recursion
Explanation: Seminal 1968 paper promoting structured alternatives.

19. Recursion in structured programming:
a) Is prohibited
b) Must have a base case
c) Only works in functional languages
d) Requires GOTO
Explanation: Recursion is allowed but requires termination conditions.

SECTION 6: CODE ANALYSIS

Analyze this code:

C Language

float avg(int scores[], int n) {

 int sum = 0; // Line 1

 for (int i = 0; i < n; i++) { // Line 2

 sum += scores[i]; // Line 3

 } // Line 4

 return (float)sum / n; // Line 5

}

20. Control structure in Line 2:
a) Sequence

b) Selection
c) Iteration
d) Recursion

21. Violation of best practices?
a) No parameters
b) Missing input validation (n > 0?)
c) Using float
d) Single exit point
Explanation: Crashes if n=0 (division by zero).

22. Refactor to improve modularity:
Answer: Split into sum_array() and avg().
Explanation: Separate summation from averaging logic.

SECTION 7: HISTORICAL CONTEXT

23. Earliest language designed for structured programming:
a) COBOL
b) ALGOL
c) Assembly
d) LISP
Explanation: ALGOL (1958) introduced block structures.

24. Structured programming emerged as a response to:
a) Slow computers
b) "Spaghetti code" crisis
c) Internet security
d) Cloud computing
Explanation: 1960s software complexity required better paradigms.

SECTION 8: REAL-WORLD APPLICATION

25. Why use structured programming in 2024?
a) Maintainability of legacy systems
b) To impress interviewers
c) It’s obsolete
d) Required for AI development
Explanation: Core principles remain vital for maintainable code.

26. Convert to structured code:

READ X

IF X=0 GOTO END

PRINT X

GOTO Start

END: STOP

Answer:

python

while True:

 x = int(input())

 if x == 0:

 break

 print(x)

SECTION 9: BEST PRACTICES

27. Which demonstrates good structured design?
a) 200-line function with nested loops
b) validate_input() + process_data() + output_result()
c) All variables global
d) Functions named func1(), func2()
Explanation: Modular separation of concerns.

28. True/False: Comments should explain complex algorithms line-by-line.
Answer: False
Explanation: Code should be self-documenting; comments explain why.

SECTION 10: COMPREHENSIVE

29. Draw a flowchart for structured BMI calculator:
Answer:

Start → Input height/weight → Validate → Calculate BMI → Classify →

Output → End

Explanation: Linear flow with single entry/exit points.

30. Fix this unstructured code:

C-Language

void printStatus(int score) {

 if (score > 50) goto PASS;

 printf("Fail");

 goto END;

 PASS: printf("Pass");

 END: return;

}

Answer:

C - Language

void printStatus(int score) {

 if (score > 50) {

 printf("Pass");

 } else {

 printf("Fail");

 }

}

