
 

ECE 811 – SOFTWARE ENGINEERING 

SOFTWARE ARCHITECTURE VIEWS –STUDY GUIDE/REVISION 

 

1. INTRODUCTION TO SOFTWARE ARCHITECTURE VIEWS 

1. Definition: Software architecture is the high-level structure of a system, comprising 
components, relationships, and principles. 

2. Architecture Views are representations of a system from different perspectives (e.g., 
structural, behavioural, deployment). 

3. Purpose: Different stakeholders (developers, testers, managers) need different views to 
understand the system. 

4. Why Are Views Important? 
• Simplify complexity by breaking down the system. 
• Improve communication among stakeholders. 
• Guide development, testing, and maintenance. 
• Ensure alignment with business and technical goals. 

 

2. THE 4+1 VIEW MODEL (PHILIPPE KRUCHTEN, 1995) 

A widely used framework for documenting software architecture: 

View Description Stakeholders Key Artifacts 

Logical View Shows functional components 
and interactions. 

Developers, 
Architects 

Class diagrams, 
component diagrams 

Process View Describes runtime behaviour, 
concurrency, and threads. 

System engineers Activity diagrams, 
sequence diagrams 

Development 
View 

Code organization, modules, and 
dependencies. 

Developers, 
DevOps 

Package diagrams, 
build scripts 

Physical View Deployment on hardware, 
servers, and networks. 

Operations, 
Sysadmins 

Deployment diagrams, 
network maps 

Scenarios (+1) Use cases or user stories that 
validate the architecture. 

All stakeholders UML use case 
diagrams, user flows 

Example: E-Commerce System 

1. Logical View: Product, Cart, Payment classes. 

2. Process View: Order processing workflow. 

3. Development View: Microservices in Java/Python. 

4. Physical View: AWS cloud deployment. 



5. Scenarios: "User checks out a product." 

 

3. OTHER KEY ARCHITECTURE VIEWS 

3.1 Static vs. Dynamic Views 

Type Focus Examples 

Static Structure (components, modules) Class diagrams, package diagrams 

Dynamic Runtime behavior (interactions, flows) Sequence diagrams, state machines 

 

3.2 C4 Model (Simon Brown) 

A simpler alternative for modern software: 

1. Context: System scope and external interactions. 

2. Containers: Applications/services (e.g., web app, database). 

3. Components: Modular parts within containers. 

4. Code: Class-level implementation. 

 

3.3. Data View (Database-Centric) 

• Focuses on data storage, flow, and schema. 

• Used in data-intensive systems (e.g., banking, analytics). 

• Artifacts: ER diagrams, data flow diagrams. 

 

4. CHOOSING THE RIGHT VIEWS 

• For Enterprise Systems: 4+1 View Model. 

• For Microservices: C4 Model + Deployment View. 

• For Embedded Systems: Process View + Physical View. 

Trade-offs 

• Over-documentation slows agility. 

• Under-documentation risks misunderstandings. 

 

5. CASE STUDY: UBER’S ARCHITECTURE VIEWS 

1. Logical View: Ride-matching algorithms. 

2. Process View: Real-time driver-passenger coordination. 

3. Development View: Microservices (Go, Node.js). 

4. Physical View: Kubernetes clusters globally. 



5. Scenarios: "User requests a ride." 

 

6. KEY TAKEAWAYS 

1. No single view captures everything—combine views for clarity. 
2. Tailor views to stakeholder needs (e.g., managers vs. devs). 
3. Update views as the system evolves (avoid "architectural drift"). 

 

7. FURTHER READING 

• Bass, L., Clements, P., & Kazman, R. (2021). Software Architecture in Practice. 

• Kruchten, P. (1995). *The 4+1 View Model of Architecture.* 

• Brown, S. (2018). "The C4 Model for Visualising Software Architecture." 

 

SHORT REVIEW QUESTIONS 

1. Which view maps software to hardware nodes? 

2. Why is the Scenarios view (+1) critical? 

3. Compare Logical vs. Process Views. 

4. When would you use the C4 Model instead of 4+1? 

Answers: 

1. Physical View. 

2. Validates all other views with real-world usage. 

3. Logical = Structure; Process = Runtime behavior. 

4. For simpler, modern systems (e.g., microservices). 

 


