
 

ECE 811 – SOFTWARE ENGINEERING 

WATERFALL MODEL FOR SOFTWARE DEVELOPMENT - STUDY GUIDE/REVISION 

 

1. INTRODUCTION 

Waterfall model is a linear, sequential approach to software development where progress flows 
downward (like a waterfall) through distinct, non-overlapping phases. 

 

2. KEY CHARACTERISTICS 

• Sequential Phases: Each phase must be 100% complete before the next begins. 

• Minimal Flexibility: Changes are costly and difficult once a phase ends. 

• Documentation-Driven: Heavy emphasis on formal documentation at every stage. 

• Phase-Gated: Formal reviews ("gates") required to proceed to the next phase. 

• Big Design Upfront (BDUF): All requirements & design finalized early. 

• Late Testing: System testing occurs after full implementation. 

• Customer Involvement: Limited to the start (requirements) and end (delivery). 

 

3. PHASES OF THE WATERFALL MODEL 

(Use the mnemonic "RDITDM" to remember the sequence) 

PHASE KEY ACTIVITIES INPUTS OUTPUTS 
(DELIVERABLES) 

1. Requirements Gather, analyze, validate, and 
document functional/non-
functional needs. 

Stakeholder 
interviews 

Software 
Requirements Spec 
(SRS) 

2. System Design Translate requirements into 
architecture, modules, 
interfaces, and data flow. 

SRS Design Document 
(DD) 

3. Implementation Write code according to 
design specs. 

DD Source Code, Unit 
Tested Modules 

4. Integration & Testing Integrate modules; test 
system against SRS 
(functional, performance, 
UAT). 

Source Code Test Reports, Fixed 
System 

5. Deployment Release the system to 
production/users. 

Tested 
System 

Live System, User 
Manuals 



PHASE KEY ACTIVITIES INPUTS OUTPUTS 
(DELIVERABLES) 

6. Maintenance Fix bugs, adapt to new 
environments, add minor 
features. 

User 
Feedback, 
Bug Reports 

Patches, Updates 

 

4. ADVANTAGES 

1. Simple & Easy to Understand – Clear structure for teams/managers. 
2. Disciplined Process – Ensures thorough documentation and reviews. 
3. Predictability – Cost/timeline estimates possible early (in theory). 
4. Stable Scope – Works if requirements are fixed and unambiguous. 
5. Easy to Manage – Progress is measurable (phase completion). 

 

5. DISADVANTAGES 

1. Inflexible – Hard/costly to change requirements after Phase 1. 
2. High Risk – Design flaws or requirement gaps detected late (during testing). 
3. Working Software Delayed – No prototype until final stages. 
4. Limited Customer Feedback – No iterative validation. 
5. Testing Bottleneck – Defects pile up if testing starts late. 
6. Unsuitable for Complex Projects – Assumes requirements won’t evolve. 

 

6. WHEN TO USE WATERFALL 

1. Requirements are stable, clear, and well-documented (e.g., regulatory systems). 
2. Short, low-complexity projects with fixed scope. 
3. Technology is mature and understood. 
4. Heavy documentation is mandated (e.g., aerospace, medical devices). 
5. Customers won’t change demands mid-project. 

 

7. WHEN TO AVOID WATERFALL 

1. Unclear or evolving requirements. 
2. Innovative projects needing user feedback. 
3. Long-term or complex systems (e.g., AI, mobile apps). 
4. Dynamic markets where business needs shift rapidly. 

 

8. REAL-WORLD APPLICATIONS 

1. Safety-critical systems (e.g., flight control software). 

2. Government/defense projects with rigid contracts. 

3. Legacy system migrations with well-defined specs. 

4. Regulated industries (medical, nuclear) requiring auditable documentation. 

 



 

 

9. WATERFALL VS. AGILE: KEY DIFFERENCES 

Factor Waterfall Agile 

Approach Linear, sequential Iterative, incremental 

Flexibility Low (changes costly) High (embraces change) 

Testing After implementation Continuous (during development) 

Customer Input Start & end only Ongoing feedback 

Documentation Extensive upfront Minimal ("just enough") 

Delivery Single final release Frequent small releases 

Risk Management Late issue detection Early issue detection 

 

10. COMMON MISCONCEPTIONS 

1. Myth: "Waterfall doesn’t allow any iteration." 

Reality: Minor iterations within a phase are allowed, but phases themselves are sequential. 

2. Myth: "Waterfall is obsolete." 
Reality: Still used in regulated/traditional sectors where predictability > flexibility. 

 

11. CRITICAL THINKING QUESTIONS 

1. Why is late-stage testing a major risk in Waterfall? 

2. How does Waterfall’s rigidity impact customer satisfaction? 

3. Explain why Waterfall struggles with large-scale AI projects. 

4. What hybrid approaches combine Waterfall and Agile (e.g., "Wagile")? 

5. How did Royce’s original 1970 paper critique "pure" Waterfall? 

 

12. KEY TAKEAWAYS FOR EXAMS/INTERVIEWS 

1. Define: "A linear SDLC model with 6 sequential phases: Requirements, Design, Implementation, 
Testing, Deployment, Maintenance." 

2. Strengths: Predictability, simplicity, documentation. 

3. Weaknesses: Inflexibility, late testing, risk of unmet needs. 

4. Use Case: Stable requirements + strict compliance needs. 

 


