ECE 811 - SOFTWARE ENGINEERING

WATERFALL MODEL FOR SOFTWARE DEVELOPMENT - STUDY GUIDE/REVISION

1. INTRODUCTION

Waterfall model is a linear, sequential approach to software development where progress flows
downward (like a waterfall) through distinct, non-overlapping phases.

2. KEY CHARACTERISTICS

o Sequential Phases: Each phase must be 100% complete before the next begins.

¢ Minimal Flexibility: Changes are costly and difficult once a phase ends.

¢ Documentation-Driven: Heavy emphasis on formal documentation at every stage.
o Phase-Gated: Formal reviews ("gates") required to proceed to the next phase.

o Big Design Upfront (BDUF): All requirements & design finalized early.

o Late Testing: System testing occurs after full implementation.

e Customer Involvement: Limited to the start (requirements) and end (delivery).

3. PHASES OF THE WATERFALL MODEL

(Use the mnemonic "RDITDM" to remember the sequence)

PHASE KEY ACTIVITIES INPUTS OUTPUTS
(DELIVERABLES)
1. Requirements Gather, analyze, validate, and Stakeholder Software
document functional/non- interviews Requirements Spec
functional needs. (SRS)
2. System Design Translate requirements into SRS Design Document
architecture, modules, (DD)

interfaces, and data flow.

3. Implementation Write code according to DD Source Code, Unit
design specs. Tested Modules

4. Integration & Testing Integrate modules; test Source Code | Test Reports, Fixed
system against SRS System
(functional, performance,
UAT).

5. Deployment Release the system to Tested Live System, User

production/users. System Manuals

PHASE KEY ACTIVITIES INPUTS OUTPUTS

(DELIVERABLES)
6. Maintenance Fix bugs, adapt to new User Patches, Updates
environments, add minor Feedback,
features. Bug Reports

4. ADVANTAGES

abrobd-=

Simple & Easy to Understand - Clear structure for teams/managers.
Disciplined Process - Ensures thorough documentation and reviews.
Predictability — Cost/timeline estimates possible early (in theory).
Stable Scope — Works if requirements are fixed and unambiguous.
Easy to Manage — Progress is measurable (phase completion).

5. DISADVANTAGES

AL e

Inflexible — Hard/costly to change requirements after Phase 1.

High Risk — Design flaws or requirement gaps detected late (during testing).
Working Software Delayed — No prototype until final stages.

Limited Customer Feedback — No iterative validation.

Testing Bottleneck — Defects pile up if testing starts late.

Unsuitable for Complex Projects — Assumes requirements won’t evolve.

6. WHEN TO USE WATERFALL

abrobd-=

Requirements are stable, clear, and well-documented (e.g., regulatory systems).
Short, low-complexity projects with fixed scope.

Technology is mature and understood.

Heavy documentation is mandated (e.g., aerospace, medical devices).
Customers won’t change demands mid-project.

7. WHEN TO AVOID WATERFALL

Pobd=

Unclear or evolving requirements.

Innovative projects needing user feedback.
Long-term or complex systems (e.g., Al, mobile apps).
Dynamic markets where business needs shift rapidly.

8. REAL-WORLD APPLICATIONS

Safety-critical systems (e.g., flight control software).
Government/defense projects with rigid contracts.
Legacy system migrations with well-defined specs.

Regulated industries (medical, nuclear) requiring auditable documentation.

9. WATERFALL VS. AGILE: KEY DIFFERENCES

Factor Waterfall Agile

Approach Linear, sequential Iterative, incremental

Flexibility Low (changes costly) | High (embraces change)

Testing After implementation | Continuous (during development)
Customer Input Start & end only Ongoing feedback
Documentation Extensive upfront Minimal ("just enough")

Delivery Single final release Frequent small releases

Risk Management | Late issue detection | Early issue detection

10. COMMON MISCONCEPTIONS

1. Myth: "Waterfall doesn’t allow any iteration."
Reality: Minor iterations within a phase are allowed, but phases themselves are sequential.

2. Myth: "Waterfall is obsolete."
Reality: Still used in regulated/traditional sectors where predictability > flexibility.

11. CRITICAL THINKING QUESTIONS

1. Why is late-stage testing a major risk in Waterfall?

2. How does Waterfall’s rigidity impact customer satisfaction?

3. Explain why Waterfall struggles with large-scale Al projects.

4. What hybrid approaches combine Waterfall and Agile (e.g., "Wagile")?

5. How did Royce’s original 1970 paper critique "pure" Waterfall?

12. KEY TAKEAWAYS FOR EXAMS/INTERVIEWS

1. Define: "Alinear SDLC model with 6 sequential phases: Requirements, Design, Implementation,
Testing, Deployment, Maintenance."

2. Strengths: Predictability, simplicity, documentation.
3. Weaknesses: Inflexibility, late testing, risk of unmet needs.

4. Use Case: Stable requirements + strict compliance needs.

