INTRODUCTION TO
SOFTWARE ENGINEERING

ECC 822 — SOFTWARE ENGINEERING
Tuesday, February 18, 2020

WHAT IS SOFTWARE ENGINEERING?

» Software engineering is a branch of computer science which includes
the development and building of computer systems software and
applications software.

INDUSTRIAL STRENGTH SOFTWARE

* An industrial strength software system is built to solve some problem
of a client and is used by the clients organization for operating some
part of business (we use the term "business" in a very broad sense—it
may be to manage inventories, finances, monitor patients, air traffic
control, etc.).

* Important activities depend on the correct functioning of the system.

* A malfunction of such a system can have huge impact in terms of
financial or business loss, inconvenience to users, or loss of property
and life.

* Industrial software system needs to be of high quality with respect to
properties like dependability, reliability, user-friendiness, etc.

REQUIREMENTS FOR INDUSTRIAL STRENGTH SOFTWARE

* Requires that the software be thoroughly tested before being used. The
need for rigorous testing increases the cost considerably. In an industrial
strength software project, 30% to 50% of the total effort may be spentin
testing (while in a student software even 5% may be too high!).

* Requirement that the development be broken into phases such that
output of each phase is evaluated and reviewed so bugs can be removed.
This requires more documentation, standards, processes, etc. All these
increase the effort required to build the software— hence the productivity
of producing industrial strength software is generally much lower than for
producing student software.

* Requirements of backup and recovery, fault tolerance, following of
standards, portability, etc. These generally have the effect of making the
software system more complex and larger. The size of the industrial
strength software system may be two times or more than the student
system for the same problem.

TYPES OF SOFTWARE PRODUCTS

There are two fundamental types of software products, i.e

Generic Products: Stand-alone systems that are produced by a
development organization and sold on the open market to any customer
who is able to buy them. Examples include software for PCs such as
databases, word processors, drawing packages and project management
tools.

Customized (or bespoke) Products: Systems which are commissioned by
a particular customer. A software contractor develops the software
especially for that customer. Examples of this type of software include
control systems for electronic devices, systems written to support a
particular business process and air traffic control systems.

FUNDAMENTAL ACTIVITIES OF SOFTWARE DEVELOPMENT

There are four fundamental activities that are
common to all software processes. These activities
are:

Software Specification: Customers and
engineers define the software that is to be
produced and the constraints on its operation.

Software Development: The software is
designed and programmed.

Software Validation: the software is checked to
..) = luvaluation

ensure that it is what the customer requires.

Software Evaluation: The software is modified

to reflect changing customer and market
requirements.

Four Activities of Software Process Framework

SOFTWARE ENGINEERING Vs COMPUTER SCIENCE

Software engineering is related to both computer science.

Computer Science is concerned with the theories and methods that underlie
computers and software systems, whereas software engineering is
concerned with the practical problems of producing software.

L]

Software Engineer is a branch of
Computer Science.

The study of principles and how
computers work, mostly from the
theoretical and mathematical

perspective It applies the principle of software

engineering to the design, development,
maintenance, testing and evaluation of
computer software

SOFTWARE ENGINEERING Vs SYSTEMS ENGINEERING

Software engineering is related to systems
engineering.

System Engineering is concerned with all
aspects of the development and evolution of
complex systems where software plays a
major role.

Focus is on hardware development, policy
and process design and system deployment,
as well as software engineering.

System engineers are involved in specifying
the system, defining its overall architecture,
and then integrating the different parts to
create the finished system.

They are less concerned with the engineering
of the system components (hardware,
software, etc.)

Software
engineering
Develop and build to low-

level, detailed, precise
requirements

Systems
engineering

Interpret high-level,
ambiguous requirements

Identify Needs

Identify Requirements
(Functional and quality)

SW Devel.
Processes,
Methods,

Tools

Formal
Methods,
Coding

Architect system/software
Design system/software

Ensure subsystem and
software designs fit

Identify stakeholders, viewpoints, views

Ensure correct external
interfaces, interfaces among
subsystems and software

Make interfaces among
oftware modules, data, and
communications path work

Identify interfaces; determine rules and
performance

Orchestrate System
Disciplines tradeoffs

System-Software tradeoffs Reuse/New Tradeoffs

Customer interface (coding)

Customer interface (non-SW) | Customer interface (SW requirements and design)

TPMs, “llities” SW quality attributes

Non-functional requirements

Acquisition lifecycle ,
V-model with feedback

Agile for DoD;

! ‘ Agile sprints, releases
Earned value for Agile

Execute software V&V

Define system V&V approach Define and execute system and

software V&V

Program management SW Project Management

Manage rapid Don't do: “Hardware”

change

Don’t do: Details

Breadth

GENERAL ISSUES AFFECTING SOFTWARE

There are three general issues that affect many different types of software:

1.

Heterogeneity: Refers to integration of new software with older legacy
systems written in different programming languages. The challenge here
is to develop techniques for building dependable software that is flexible
enough to cope with this heterogeneity.

Business and Social Change: Business and society are changing
incredibly quickly as emerging economies develop and new technologies
become available. Software need to be able to change their existing
software and to rapidly develop new software.

Security and Trust: As software is intertwined with all aspects of our
lives, it is essential that we can trust that software. This is especially true
for remote software systems accessed through a web page or web
service interface.

TYPES OF SOFTWARE APPLICATIONS / 01

There are many different types of software application including:
Stand-alone applications: Application systems that run on a local computer, such as a PC. The¥

include all necessary functionality and do not need to be connected to a network. Examples o
such applications are office applications on a PC, CAD programs, photo manipulation software,

etc.

Interactive transaction-based applications: Applications that execute on a remote computer
and that are accessed by users from their own PCs or terminals. These include web
apBIications such as e-commerce applications where users can interact with a remote system
to buy goods and services.

Embedded control systems: Software control systems that control and mana%e hardware
devices. Examples of embedded systems include the software in a mobile (cell) phone,
software that controls anti-lock braking in a car, and software in a microwave oven to control
the cooking process.

Batch processing systems: Business s(]/stems that are designed to process data in large batches.
They process large numbers of individual inputs to create corre5||oonding outputs. Examples of
batch systems include periodic billing systems, such as phone billing systems, and salary
payment systems.

TYPES OF SOFTWARE APPLICATIONS / 02

There are many different types of software application including:

Entertainment systems: Systems that are primarily for personal use and which are intended to
entertain the user. Most of these systems are games of one kind or another. The quality of the
user interaction offered is the most important distinguishing characteristic of entertainment
systems.

Systems for modeling and simulation: Systems that are developed by scientists and engineers
to model physical processes or situations, which include many, separate, interacting objects.
These are often computationally intensive and require high-performance parallel systems for
execution.

Data collection systems: Systems that collect data from their environment using a set of
sensors and send that data to other systems for processmﬁ. The software has to interact with
Isensors and often is installed in a hostile environment such as inside an engine or in a remote
ocation.

S¥stems of systems: Systems that are composed of a number of other software systems. Some
of these may be generic software products, such as a spreadsheet program. Other systems in
the assembly may be specially written for that environment.

SOFTWARE ENGINEERING & THE WEB

Changes in the software organization, led to changes in the ways that web-
based systems are engineered. For example:

Software reuse has become the dominant approach for constructing
web-based systems. When building these systems, you think about how

you can assemble them from pre-existing software components and
systems.

Incremental development: It is now generally recognized that it is
impractical to specify all the requirements for such systems in advance.
Web-based systems should be developed and delivered incrementally.

User interfaces are constrained by the capabilities of web browsers. Web
forms with local scripting are more commonly used. Application
interfaces on web-based systems are often poorer than the specially
designed user interfaces on PC system products.

THE ROLE OF SOFTWARE ENGINEER /01

Customer:

Q Requires a computer system to achieve some business goals
by user interaction or interaction with the environment
in a specified manner

O System-to-be
— —
User ¢ Software-to-be ¢

%/_/
v * v

Software Engineer’s task:

To understand how the system-to-be needs to interact with
the user or the environment so that customer’s requirement is met

4 O and design the software-to-be

May be the Programmer’s task:

<

same person To implement the software-to-be
designed by the software engineer

THE ROLE OF SOFTWARE ENGINEER / 02

A bridge from customer needs to programming implementation

|
/ﬁ N Q
n \\Q\
n R LI
Q /l\ \
Customer ~—
j L ol Programmer
| <
.

First law of software engineering

Software engineer is willing to learn the problem domain
(problem cannot be solved without understanding it first)

14

SOFTWARE ENGINEERING ETHICS

Some professional responsibilities includes:

Confidentiality: You should normally respect the confidentiality of your
employers or clients irrespective of whether or not a formal
confidentiality agreement has been signed.

Competence: You should not misrepresent your level of competence.
You should not knowingly accept work that is outside your competence.

Intellectual Property Rights: You should be aware of local laws governing
the use of intellectual property such as patents and copyright. You should
be careful to ensure that the intellectual property of employers and
clients is protected.

Computer Misuse: You should not use your technical skills to misuse
other people’s computers.

SECOND LAW OF SOFTWARE ENGINEERING

* Software should be written for people first

 (Computers run software, but hardware quickly

becomes outdated)
« Useful + good software lives long

* To nurture software, people must be able to understand

It

16

WATERFALL METHOD

Requirements

‘

1) @]

QD00
HRO-2
-"."‘

1 KL RS

ooats T] Implementation

PR Testin
Waterfall — IIIQ) J
O
method 1 g.:{.:::‘ Deployment &
sSueS ']“I Maintenance
,.g:!
"'"..‘ Q
LR
.'6’.“.'6.

Each activity confined to its “phase”.
Unidirectional, no way back;
finish this phase before moving to the next 17

AGILE SOFTWARE DEVELOPMENT

* Agile software development refers to a
group of software development
methodologies based on iterative
development, where requirements and
solutions evolve through collaboration
between self-organizing cross-functional
teams.

* Agile methods or Agile processes
generally promote a disciplined project
management process that encourages
frequent inspection and adaptation.

The agile way

‘Maintenance and
~user feedback

1
Requirements
1 _analysis

Agile software |
development

Testingand

debuggingl ;

Development
(coding)

e What to measure?

« Project (developer’s work),

for budgeting and scheduling

* Product,

for quality assessment

19

WORK ESTIMATION STRATEGY

Make initial guess for a little part of the work
Do a little work to find out how fast you can go

Make correction on your initial estimate

Repeat until no corrections are needed
or work is completed

20

Step 1: Divide the problem into small & similar parts

Step 2:
Estimate relative
sizes of all parts

Size(D)= 4
Size(@)= 7
Size(®) = 10
Size(@)=3
Size(®) =4
Size(®)=2
Size(@)=4
Size(®)=7

SIZING THE PROBLEM (2)

 Step 3: Estimate the size of the total work

Total size = 2. points-for-section1 (1 =1..N)

 Step 4: Estimate speed of work (velocity)

e Step 5: Estimate the work duration

_ Path size
Travel duration =

Travel velocity

NTIAL COST OF ESTIMATION

Estimation accuracy — 5

Estimation cost ——>

O Improving accuracy of estimation beyond a certain point requires huge cost
and effort (known as the law of diminishing returns)

O In the beginning of the curve, a modest effort investment yields huge gains in

accuracy
23

ERROR OVER TIME

4 Esti ti
oo en Waterfall Method

Requirements Design Imple

Start Completion Time

Waterfall method cone of uncertainty starts high and gradually
converges to zero as the project approaches completion.

ERROR OVER TIME

$ Cenmaton Agile Method

Leaps in estimation accuracy
., caused by insight about the overall
_/-/‘//' project, gained through completion
- / of parts of work

Y —
—_—

Requirements

Design S
Implementation ; Requirements ", >
o Design _ . Requirements
Start ’ Implementation , Design _ PrOJeCt Tlme
\ : K Implementation .
Part 1 completion| Completion

Part 2 ;:ompletion\

Agile method cone of uncertainty starts high and in leaps
converges to zero as the project approaches completion.

AGILE PROJECT EFFORT ESTIMATION

= 9 =

D\
mo I’k baCkl OQEL\ //< Estimated work duration)

2) Prune Section 7
3) Prune Section 6

4) Prune Section 5
) 5) Prune Section 4

6) Prune Section 1

/7) Prune Section 2

/ 8) Prune Section 3

L), 1) Prune Section 8 3.5 days (7pts)

e
-
-
-
-
-
.

-
-

2 days (4pts)
1 day (2pts)
2 days (4pts)

1.5 days (3p)

2 days (4pts)

3.5 days (7p)
5 days (10p)

Q\\"'\
} \"‘“{ Items pulled by the team into an iteration)

(List prioritized by the customer>

21 days
>1st iteration >>2nd iteration> L 0>n-th iteration>
5 days . >

(Estimated completion date) Time

26

SENTENCE: “My friend is coding a new program”

translated@opositions

CONCEPT MAPS

Useful tool for problem domain description

Proposition | Concept | Relation Concept
1. I have friend
2 friend engages in coding
3. coding constructs a | program
4 program | is new

Z}'i- Search the Web for Concept Maps

/
have

4

friend
~—
engages in

coding

—
constructs a

a

program
IS
new

27

CONCEPT MAP FOR HOME ACCESS CONTROL

tenant

\
/ enters
\

wishes key

can be

upper bound on failed attempts

Wcauses% valid key invalid key /

lock opened
D \ can be prevented by enforcing

may siﬁal /
burglar f—launches—| dictionary attack

ND TRANSITION RULES

IF validKkey AND holdOpeninterval THEN unlock

IF validKey THEN unlock

(o)

F pushLockButton THEN loc

SEmm

unlocked]

IF timeAfterUnlock = max{ autoLocklInterval, holdOpenlnterval } THEN lock

... what seemed a simple problem, now is becoming complex

