
CLASSICAL WATERFALL
MODEL

ECC 811 – SOFTWARE ENGINEERING

Tuesday, July 8, 2025

WHAT IS CLASSICAL WATERFALL MODEL?

1. Waterfall Model is one of the earliest and
most straightforward Software
Development Life Cycle (SDLC)
methodologies.

2. Waterfall model follows a linear,
sequential approach where each phase
must be completed fully before the next
phase begins, resembling a waterfall
flowing steadily downward through
distinct stages.

KEY FEATURES OF THE WATERFALL MODEL

1. Linear & Sequential: Progress flows in one
direction (like a waterfall) through defined phases.

2. Phase-Gated: Each phase has specific deliverables
and a review process. Approval is needed to
proceed to the next phase.

3. Documentation-Driven: Heavy emphasis on
comprehensive documentation at each stage
before moving forward.

4. Minimal Customer Involvement: Customer
feedback is typically gathered only at the very
beginning (requirements) and the very end
(delivery).

5. "Big Design Up Front" (BDUF): Requires detailed
requirements and design specifications to be
finalized early.

1. Feasibility Study:
1. Used to determine whether it would be

financially and technically feasible to
develop the software.

2. Involves understanding the problem and
then determine the various possible
solutions.

3. Identified solutions are analyzed based on
their benefits and drawbacks,

4. The best solution is chosen

2. Requirements analysis and specification:
1. The aim is to understand the exact

requirements of the customer and
document them properly

2. Uses 2 steps, i.e
a) Requirement gathering and analysis
b) Requirement specification in the SRS

document.

3. Design:
Transforms the requirements specified in
the SRS document into a structure that is
suitable for implementation in some
programming language.

4. Coding and Unit testing:
1. Software design is translated into

source code using any suitable
programming language.

2. Each designed module is coded.
3. Each module is tested to ensure that it

is working properly.

Integration and System testing:
1. Integration of various modules is

carried out incrementally over a
number of steps.

2. The full working system is tested.

Maintenance
1. Corrective, perfective and

adaptive maintenance is
carried out.

SOFTWARE MAINTENANCE

1. Maintenance comprises approximately 60% of the total effort spent
to develop a full software.

2. There are basically three types of maintenance:
a) Corrective Maintenance: corrects errors that were not discovered during

the product development phase.

b) Perfective Maintenance: enhances the functionalities of the system based
on the customer’s request.

c) Adaptive Maintenance: allows work in a new environment such as work on
a new computer platform or with a new operating system.

• Unit Testing:

• Integration Testing:

• System Testing:

• User Acceptance Testing:

TYPES OF SYSTEM TESTING / 01

TYPES OF SYSTEM TESTING

There are three types of system testing

1. Alpha testing: Alpha testing is the system testing
performed by the development team.

2. Beta testing: Beta testing is the system testing
performed by a friendly set of customers.

3. Acceptance testing: After the software has been
delivered, the customer performed the acceptance
testing to determine whether it meets his needs.

DEVELOPERS

USERS

WHITE BOX, BLACK BOX & GREY BOX TESTING

White box, black box, and grey box testing are three
distinct approaches to software testing, differing
primarily in the level of knowledge testers have about
the system's internal workings.

1. White box testing involves having full knowledge
of the system's internal structure, code, and logic,
allowing testers to design tests based on this
knowledge.

2. Black box testing treats the system as a "black
box," meaning testers have no knowledge of the
internal workings and focus on functionality based
on specifications and requirements.

3. Grey box testing is a hybrid approach, where
testers have partial knowledge of the system's
internal workings, allowing them to combine
elements of both white box and black box testing.

WHITE BOX, BLACK BOX & GREY BOX TESTING COMPARISON

TYPES OF SOFTWARE TESTING (SUMMARY)

ADVANTAGES OF THE WATERFALL MODEL

The advantages of the waterfall model are as follows.
1. This model is very simple and is easy to understand.
2. Phases in this model are processed one at a time.
3. Each stage in the model is clearly defined.
4. This model has very clear and well understood milestones.
5. Process, actions and results can be well documented.
6. Reinforces good habits:

a) define-before- design
b) design-before-code

7. This model works well for smaller projects and projects where
requirements are well-understood.

The advantages of the waterfall model are as follows.
1. No feedback path: Model assumes that no error is ever committed by

developers during any phases. Therefore, it does not incorporate any
mechanism for error correction.

2. Difficult to accommodate change requests: Assumes that all the
customer requirements can be completely and correctly defined at the
beginning of the project, but actually customers’ requirements keep on
changing with time. It is difficult to accommodate any change requests
after the requirements specification phase is complete.

3. No overlapping of phases: A new phase can start only after the
completion of the previous phase. But in real projects, this can’t be
maintained. To increase the efficiency and reduce the cost, phases may
be required overlap.

DISADVANTAGES OF THE WATERFALL MODEL

WHY DOES THE WATERFALL MODEL FAIL ON REAL PROJECTS? / 01

1. One way street: Model is just like the one-way street. Once phase X
is completed and next phase Y has started then there is no way to
going back on the previous phase. This is one of the issues to the
failure of the waterfall model.

2. Overlapping: Model has no provisions for overlapping among
phases. But in real projects, this can’t be maintained. To increase
the efficiency and reduce the cost, phases may overlap.

3. Interaction: There is no interaction among phase. Users have little
interaction with project team. This feedback is not taken during
development.

4. Support delivery of system: Model does not support delivery of
system in pieces. After a development process starts, changes
cannot accommodate easily.

5. Feedback path: Model has no feedback path. Hence, it does not
incorporate any mechanism for error correction.

6. Not Flexible: Difficult to accommodate change requests. The
model assumes that all the customer requirements can be
completely and correctly defined at the beginning of the project,
but actually customers’ requirements keep on changing with time.
After the requirements specification phase is completed difficult to
accommodate any change requests.

WHY DOES THE WATERFALL MODEL FAIL ON REAL PROJECTS? / 02

WHEN IS WATERFALL SUITABLE?

1. Projects with very clear, stable, and well-
understood requirements from the outset.

2. Projects with fixed scope, budget, and
deadlines that are unlikely to change.

3. Projects involving familiar technology.

4. Short duration projects.

5. Projects with stringent regulatory
compliance requiring extensive
documentation (common in some industries
like medical devices or aerospace, though
often adapted).

	Slide 1: CLASSICAL WATERFALL MODEL
	Slide 2: WHAT IS CLASSICAL WATERFALL MODEL?
	Slide 3: KEY FEATURES OF THE WATERFALL MODEL
	Slide 4
	Slide 5: SOFTWARE MAINTENANCE
	Slide 6: TYPES OF SYSTEM TESTING / 01
	Slide 7: TYPES OF SYSTEM TESTING
	Slide 8: WHITE BOX, BLACK BOX & GREY BOX TESTING
	Slide 9: WHITE BOX, BLACK BOX & GREY BOX TESTING COMPARISON
	Slide 10: TYPES OF SOFTWARE TESTING (SUMMARY)
	Slide 11: ADVANTAGES OF THE WATERFALL MODEL
	Slide 12: DISADVANTAGES OF THE WATERFALL MODEL
	Slide 13: WHY DOES THE WATERFALL MODEL FAIL ON REAL PROJECTS? / 01
	Slide 14: WHY DOES THE WATERFALL MODEL FAIL ON REAL PROJECTS? / 02
	Slide 15: WHEN IS WATERFALL SUITABLE?

