SOFTWARE ARCHITECTURE
VIEWS

ECC 811 — SOFTWARE ENGINEERING
Monday, July 28, 2025

DEFINITION OF SOFTWARE ARCHITECTURE VIEW

1. Software architecture descriptions are commonly
organized into views.

Each view addresses a set of system concerns, following
the conventions of its viewpoint.
* Viewpoint - A position or direction
from which something is observed or considered;

* View — Details or full specification considered from that
viewpoint
— (~ describes the notations, modeling and analysis techniques that

express the architecture in question from the perspective of a
given set of stakeholders)

2. Therefore, a software view is a representation of the
system from the perspective of a viewpoint.

EXAMPLES OF SW ARCHITECTURE VIEWS

A view allows a user to examine a portion of a particular interest area.
Examples of software views include:

1. A Logical View (top / overall / bird’s eye view)
a) all functions,
b) organizations,

2. Implementation view
a) Technology (HW and networking)

End Liser Frogrammesrs

b) Module sequence Funcsianaliy | A —
3. Developmental view Lagical Imglemerilation
a) Frontend View : Vit
b) Backend -flr::lll:;lflrl'..!;tl.:l'l'ﬂnln'n ' Ls-:li:lr
c) Database connectivity '
4. Process (Deployment) View Fracess neprimerl
a) Modules and its functions,
b) Their interactions bummwm "ELET:!::H.E'-':H
c) Control points Thughine Dy i

d) Non Functional Requirements
5. Security View
a) UserID/ Password
b) Graphical password
c) Transactional password

SOFTWARE ARCHITEC

View
'-4~'... .----'-\-.‘
: Per - — Viewpoint
T
0
0
0
0
0
.
0
0
0
0
0
0
0
0)
N Persp:ctlve . .
Vv t
. o 1lewpolin

|

VIEWS OF SOFTWARE ARCHITECTURE

Component & Connector
(C&C) View

show how the software is
structured as interacting
runtime elements

Software System
Architecture

Module View

Show how the software is
structured as a set of
implementation units

)

Allocation View
Shows how software relates to
non-software structures

Software structures are categorized as (a) Module Structures, (b) Component
and Connector Structures, (c) Allocation Structures

C & C ARCHITECTURE VIEW

Component and Connector (C&C) architecture view of
a system has two main elements, i.e components and
connectors. Component

computational elements or
data stores that have some
presence during the
system execution

System

Component

Connector
- v\
Connector

defines the means of interaction
between components.

COMPONENTS

Components are

generally units of O B
computation or data

T —

stores in the system. Server
i Y

Each component has a {\/

name, which is generally [} el

chosen to represent the

role of the component or (a) Examples of components

the function it performs.

WHAT IS A CONNECTOR?

Connectors is architectural element
that models

Interactions among components

Rules that govern those
interactions

Connector offers
Simple interactions
Procedure calls
Shared variable access

Complex & semantically rich
interactions

Client-server protocols

Database access protocols

Asynchronous event
multicast

Connector provides
Interaction duct(s)
Transfer of control and/or data

| Bus type connector

Qﬁ \ Database Access
______ D Request - Reply

:J<—> Roc

(a) Examples of software connectors

s w N e

MODULES

Software elements are called modules
Modules are units of implementation
Each module is built using a separate Code

Each module has a specific assigned functional
responsibility which includes:

Decomposition — break large system to functionally working,
understandable modules (Accounts, Registration, Appt.
booking, Consulting)

Uses — Each module is used by specific users following
procedures (Dr Consultation, Registration etc..)

Layered — Correct layered flow of use relations

Class — generalisation allowing to reuse / inherit from other
objects

MODULE STRUCTURES

* Elements: modules (units of implementation). Modules
are a code based way of considering the system
e Specifies:
— Functional responsibility of modules
— Other elements a module is allowed to use
— Generalization and specialization relations
 Run-time operation of software is not a concern from

this view (modularity, modifiability, development, data
integrity, data hiding, reuse are consideed)

STYLES FOR C&C VIEW

A style defines a family of architectures that satisfy the
constraints of that style

Module views: some of the common styles are
decomposition, uses, generalization, and layered.

Decomposition style: a module is decomposed into sub-
modules, and the system becomes a hierarchy of modules.

Uses style: modules are not parts of each other, but a module
uses services of other modules (for example, a function call or
a method invocation) to correctly do its own work.

Generalization style: modules are often classes, and a child
class inherits the properties of the parent class and specializes
it.

PIPE & FILTER STYLE / 01

Pipe and filter style of architecture’s goal is to produce some
output data by suitably transforming the input data.

It consists of one or more data sources. The data source is
connected to data filters via pipes. Filters process the data they
receive, passing them to other filters in the pipeline. The final
data is received at a Data Sink.

A filter may have more than one inputs and more than one
outputs.

This style is suited for systems that primarily do data
transformation some input data is received and processed.

Pipe Pipe Pipe -
Data B —— Filter EEE—
Source P Hilter

PIPE & FILTER STYLE / 02

Data source

* Provides a sequence of data
values of the same structure
or type.

« Can actively push the data
values to the first processing
stage, or passively provide
data when the first filter

Data sink

collects the results from the
end of the pipeline.

Active data sink pulls results
of the preceding processing
stage

Passive one allows the
preceding filter to push or
write the results into it.

pulls. . y
= Pipe Pipe Pipe 0
ata —_— _>
Source —\b Filter \ Filter /
Pipes

connections between filters, between the data source and the
first filter, and between the last filter and the data sink.

If two active components are joined, the pipe synchronises
them with a FIFO buffer.

PIPE & FILTER STYLE / 03

Class Collaborators
Data Sink * Pipe
Class Collaborators —
Data Source * Pipe Responsibility
* Consumes output.
Responsibility
* Delivers input to
processing
pipeline.
o Pipe Pipe o
Pipe P P
Data TN Filter —_— Filter
Source \
AN
Class / Collaborators Class N Collaborators
Pipe * Data Source Filter * Pipe
- * Data Sink P
Responsibility e Filter ! Responsibility
* Transfers data.

* Buffers data.

* Synchronizes
active neighbors.

* Gets input data.
¢ Performs a function
on its input data.

¢ Supplies output
data.

SHARED DATA STYLE /01

In data centred style (also called data centred
architecture), data is exchanged between
components through shared storage.

The computational components are coordinated,
with subroutines to a main program sequences
through them.

Data is then communicated between the
components through shared storage.

Communication between the computational
components and shared data is an unconstrained
read-write protocol.

SHARED DATA STYLE /02

Data store:

Data is centralized and
accessed frequently by
other components, which
modify data.

The main purpose of this

style is to achieve integrality

of data.

Shared Data Components

« Different components
communicate through shared data
repositories.

« Components access a shared
data structure and are relatively
independent, in that, they interact
only through the data store.

1\

Client S/W Client S/W4| \
" 7 Client S/W &
,—f‘—_—‘\ -
\
o SISl > ¢
Data store
(Repository or
blackboard) 1 Client S/W
Client S/W S __x
1 Client S/W
Client S/W

VARIANTS OF SHARED DATA VIEW

 There are two variations of this style possible, i.e repository
and blackboard.

* Repository Architecture: the data store 1s passive and the
clients (software components or agents) of the data store are
active, which control the logic flow. The participating
components check the data-store for changes.

* Blackboard Architecture Style: the data store is active and its
clients are passive. Therefore the logical flow is determined by
the current data status in data store. It has a blackboard
component, acting as a central data repository, and an
internal representation is built and acted upon by different
computational elements.

REPOSITORY ARCHITECTORAL VIEW

1. The computational processes are independent and triggered by incoming
requests.

2. If the types of transactions in an input stream of transactions trigger selection of
processes to execute, then it is traditional database or repository architecture,

or passive repository.
3. This approach is widely used in DBMS, library information system, the interface
repository in CORBA, compilers, and CASE (computer aided software

engineering) environments.

~ Course — Approvals
Feedback \

Repository

I

// \\

ADVANTAGES OF REPOSITORY ARCHITECTORAL VIEW

Repository Architecture Style has following
advantages —

1. Provides data integrity, backup and restore
features.

2. Provides scalability and reusability of agents
as they do not have direct communication
with each other.

3. Reduces overhead of transient data between
software components.

DISADVANTAGES OF REPOSITORY ARCHITECTORAL VIEW

Because of being more vulnerable to failure and data
replication or duplication, Repository Architecture Style
has following disadvantages:

1. High dependency between data structure of data
store and its agents.

Changes in data structure highly affect the clients.
Evolution of data is difficult and expensive.
Cost of moving data on network for distributed data

BLACKBOARD ARCHITECTORAL VIEW

In Blackboard Architecture Style, the data store 1s active and
its clients are passive.

The logical flow 1s determined by the current data status in
data store.

It has a blackboard component, acting as a central data
repository, and an internal representation is built and acted
upon by different computational elements.

The components interact only through the blackboard. The
data-store alerts the clients whenever there 1s a data-store
changes. The current state of the solution is stored in the
blackboard and processing is triggered by the state of the
blackboard.

PARTS OF A BLACKBOARD ARCHITECTURE

Knowledge Sources (KSn)
1. Also known as Listeners or
Subscribers are distinct and

. : Computation/control
independent units.
manages tasks and checks
2. They solve parts of a problem
: the work state.
and aggregate partial results.
Direct Access Computation

KS1
@ Black Board | o
: (Shared Data) :

<>

Memory

ADVANTAGES OF BLACKBOARD ARCHITECTURE

1. Blackboard Model provides concurrency that
allows all knowledge sources to work in
parallel as they independent of each other.

2. Its scalability feature facilitates easy steps to
add or update knowledge source.

3. Further, it supports experimentation for
hypotheses and reusability of knowledge
source agents.

DISADVANTAGES OF BLACKBOARD ARCHITECTURE

* The structural change of blackboard may have a
significant impact on all of its agents, as close
dependency exists between blackboard and
knowledge source.

* Blackboard model is expected to produce
approximate solution; however, sometimes, it
becomes difficult to decide when to terminate the
reasoning.

e Suffers some problems in synchronization of multiple
agents, therefore, it faces challenge in designing and
testing of the system.

CLIENT SERVER ARCHITECTURE

In this style, there are two component types—clients and
servers.

A constraint of this style is that a client can only communicate
with the server, and cannot communicate with other clients.
The communication between a client component and a server
component is initiated by the client the client sends a request
for some service that the server supports.

The server receives the request at its defined port, performs
the service, and then returns the results of the computation
to the client who requested the service.

EXAMPLE: ARCHITECTURE OF USSD MOBILE PAYMENT

« USSD is a capability of GSM network used for transferring information between
mobile phone and application.

« User requests a service by entering short code on mobile. Format of code is
standardized and content is specified for each service, the content can be
containing USSD code, from account, to account, amount, currency, target
mobile number.

« USSD gateway service provider communicates with GSM network through SS7
protocol.

Mobile user i N

TR

g S—
=
(auc

\ \“-q__) /

N __,/
(" Clearingand |
‘ earingan W [USSD gateway] Xm
| settlement
b USSD application server

Transactionserve:

TCPIP
Payment
server [Content provider
e

Payee bank (
Payer bank

EXAMPLE: ARCHITECTURE OF SMS MOBILE PAYMENT SYSTEM

» No special software has been used in this platform.

« The communication channel between user and payment network is SMS.

» A standard format is used for sending messages such as timestamp, random
number, from account, to account, amount, currency, and target mobile number.
The payer authentication is based on payer mobile number and PIN.

« Because of security problem related to PIN a safer solution is achieved by one-
time password.

« Some of mobile services which can be provided by this platform include bill
payment, financial operation like account history and funds transfer

Mobile user

' =
Cauc)

' Clearingand ‘ SMS
Center

settlem mer nt

Content provider

Paymentserver Transaction server

Payee bank Payer bank ‘
|

EXAMPLE: ARCHITECTURE OF WAP/GPRS MOBILE PAYMENT SYSTEM

» Authentication of the payer is done by digital certificate, mobile phone number
and PIN.

A URL link in mobile phone download associated certificate. Transferring of
information routed by GPRS network and WAP enabled phone.

« WAP uses a special language WML for communication Between WAP Gateway
and content on the Internet.

 The WAP Gateway converts between WML and HTML, allowing delivery of WAP
based content to a WAP capable mobile device

WAP enable Content server
phone

wireles .
WAP wired g
gateway a\

Payment
server

User’s certificate URL

Clearing and |

User’s X509 settlement |

certificate

‘ Payee bank ‘ ‘ Payer bank

Certificate directory

EXAMPLE: ARCHITECTURE OF SIM-BASED APPLICATION MOBILE PAYMENT SYSTEM

» This platform is based on application installed on SIM.

« User receives payment software and other services directly through OTA server.
When the software is successfully installed, user can send a request for
supported services onto operator.

» This request is processed in OTA server and recorded on transaction server.

Authentication server

Mobile
user

STK & 4
java
enable

Clearing and
settiement

Payee bank

Paymentserver HSM

Remote
application
management

SMS

obile

network
GSM/GPRS
J/ UMTS

557

SMPP

Center

‘ Content provider ’

Transactionserver

Payer bank

REVIEW QUESTIONS

W o0 N ULk WDNPRE

N e o el e
N o U bk w N e O

Define View.

Define viewpoint.

What is the difference between view and viewpoint?

List the various views in software architecture

Why multiple views are required in defining SW Architecture ?

How SW architecture is connected to view and viewpoint ?

Explain logical view with an example. Who uses this view ?

Explain Process (Deployment) view with an example. Who uses this view ?
Explain Development (Implementation) view with an example. Who uses this view ?
Explain physical view with an example. Who uses this view ?

Explain usecase view (scenario). Why is this view important ?

Define Structure

How is structure different from views ?

List the categories of structure

Define module structure

Define component and connector structure

What do you understand by Allocation structure ?

N

A

16m Question Bank

Define and explain the importance of various views in
a SWA

Define structure. List and explain various structures
considered in SWA

Explain with a neat diagram Kruchten’s 4+1 RUP view
Explain with a neat diagram Siemens 4 view
Explain with a neat diagram SEI view

Case study on following views

1. RUP4+1
2. Siemens 4
3. SEl

	Slide 1: SOFTWARE ARCHITECTURE VIEWS
	Slide 2: DEFINITION OF SOFTWARE ARCHITECTURE VIEW
	Slide 3: EXAMPLES OF SW ARCHITECTURE VIEWS
	Slide 4
	Slide 5: VIEWS OF SOFTWARE ARCHITECTURE
	Slide 6: C & C ARCHITECTURE VIEW
	Slide 7: COMPONENTS
	Slide 8: WHAT IS A CONNECTOR?
	Slide 9: MODULES
	Slide 10: MODULE STRUCTURES
	Slide 11: STYLES FOR C&C VIEW
	Slide 12: PIPE & FILTER STYLE / 01
	Slide 13: PIPE & FILTER STYLE / 02
	Slide 14: PIPE & FILTER STYLE / 03
	Slide 15: SHARED DATA STYLE /01
	Slide 16: SHARED DATA STYLE /02
	Slide 17: VARIANTS OF SHARED DATA VIEW
	Slide 18: REPOSITORY ARCHITECTORAL VIEW
	Slide 19: ADVANTAGES OF REPOSITORY ARCHITECTORAL VIEW
	Slide 20: DISADVANTAGES OF REPOSITORY ARCHITECTORAL VIEW
	Slide 21: BLACKBOARD ARCHITECTORAL VIEW
	Slide 22: PARTS OF A BLACKBOARD ARCHITECTURE MODEL
	Slide 23: ADVANTAGES OF BLACKBOARD ARCHITECTURE
	Slide 24: DISADVANTAGES OF BLACKBOARD ARCHITECTURE
	Slide 25: CLIENT SERVER ARCHITECTURE
	Slide 26: EXAMPLE: ARCHITECTURE OF USSD MOBILE PAYMENT
	Slide 27: EXAMPLE: ARCHITECTURE OF SMS MOBILE PAYMENT SYSTEM
	Slide 28: EXAMPLE: ARCHITECTURE OF WAP/GPRS MOBILE PAYMENT SYSTEM
	Slide 29: EXAMPLE: ARCHITECTURE OF SIM-BASED APPLICATION MOBILE PAYMENT SYSTEM
	Slide 30: REVIEW QUESTIONS
	Slide 31: 16m Question Bank

