
SOFTWARE ARCHITECTURE
VIEWS

ECC 811 – SOFTWARE ENGINEERING

Monday, July 28, 2025

DEFINITION OF SOFTWARE ARCHITECTURE VIEW

1. Software architecture descriptions are commonly
organized into views.

Each view addresses a set of system concerns, following
the conventions of its viewpoint.

• Viewpoint - A position or direction
from which something is observed or considered;

• View – Details or full specification considered from that
viewpoint
– (~ describes the notations, modeling and analysis techniques that

express the architecture in question from the perspective of a
given set of stakeholders)

2. Therefore, a software view is a representation of the
system from the perspective of a viewpoint.

EXAMPLES OF SW ARCHITECTURE VIEWS

A view allows a user to examine a portion of a particular interest area.
Examples of software views include:
1. A Logical View (top / overall / bird’s eye view)

a) all functions,
b) organizations,

2. Implementation view
a) Technology (HW and networking)
b) Module sequence

3. Developmental view
a) Front end
b) Backend
c) Database connectivity

4. Process (Deployment) View
a) Modules and its functions,
b) Their interactions
c) Control points
d) Non Functional Requirements

5. Security View
a) User ID / Password
b) Graphical password
c) Transactional password

co
nt

en
t

co
n
te

n
t

Viewpoint
Perspective

ViewpointPerspective

……

View

...

...

Software

Model

SOFTWARE ARCHITECTURE VIEWS/VIEWPOINTS

VIEWS OF SOFTWARE ARCHITECTURE

Software System

Architecture

Allocation View

Shows how software relates to

non-software structures

Module View

Show how the software is

structured as a set of

implementation units

Component & Connector

(C&C) View

show how the software is

structured as interacting

runtime elements

Software structures are categorized as (a) Module Structures, (b) Component

and Connector Structures, (c) Allocation Structures

C & C ARCHITECTURE VIEW

1. Component and Connector (C&C) architecture view of
a system has two main elements, i.e components and
connectors. Component

computational elements or

data stores that have some

presence during the

system execution

Connector

defines the means of interaction

between components.

COMPONENTS

1. Components are
generally units of
computation or data
stores in the system.

2. Each component has a
name, which is generally
chosen to represent the
role of the component or
the function it performs.

(a) Examples of components

WHAT IS A CONNECTOR?
1. Connectors is architectural element

that models

a) Interactions among components

b) Rules that govern those
interactions

2. Connector offers

a) Simple interactions

• Procedure calls

• Shared variable access

b) Complex & semantically rich
interactions

• Client-server protocols

• Database access protocols
• Asynchronous event

multicast
3. Connector provides

a) Interaction duct(s)

b) Transfer of control and/or data
(a) Examples of software connectors

MODULES

1. Software elements are called modules
2. Modules are units of implementation
3. Each module is built using a separate Code
4. Each module has a specific assigned functional

responsibility which includes:
a) Decomposition – break large system to functionally working ,

understandable modules (Accounts, Registration, Appt.
booking, Consulting)

b) Uses – Each module is used by specific users following
procedures (Dr Consultation, Registration etc..)

c) Layered – Correct layered flow of use relations
d) Class – generalisation allowing to reuse / inherit from other

objects

MODULE STRUCTURES

• Elements: modules (units of implementation). Modules
are a code based way of considering the system

• Specifies:
– Functional responsibility of modules

– Other elements a module is allowed to use

– Generalization and specialization relations

• Run-time operation of software is not a concern from
this view (modularity, modifiability, development, data
integrity, data hiding, reuse are consideed)

STYLES FOR C&C VIEW

• A style defines a family of architectures that satisfy the
constraints of that style

• Module views: some of the common styles are
decomposition, uses, generalization, and layered.

• Decomposition style: a module is decomposed into sub-
modules, and the system becomes a hierarchy of modules.

• Uses style: modules are not parts of each other, but a module
uses services of other modules (for example, a function call or
a method invocation) to correctly do its own work.

• Generalization style: modules are often classes, and a child
class inherits the properties of the parent class and specializes
it.

PIPE & FILTER STYLE / 01

• Pipe and filter style of architecture’s goal is to produce some
output data by suitably transforming the input data.

• It consists of one or more data sources. The data source is
connected to data filters via pipes. Filters process the data they
receive, passing them to other filters in the pipeline. The final
data is received at a Data Sink.

• A filter may have more than one inputs and more than one
outputs.

• This style is suited for systems that primarily do data
transformation some input data is received and processed.

Data source

• Provides a sequence of data

values of the same structure

or type.

• Can actively push the data

values to the first processing

stage, or passively provide

data when the first filter

pulls.

Data sink

• collects the results from the

end of the pipeline.

• Active data sink pulls results

of the preceding processing

stage

• Passive one allows the

preceding filter to push or

write the results into it.

Pipes

connections between filters, between the data source and the

first filter, and between the last filter and the data sink.

If two active components are joined, the pipe synchronises

them with a FIFO buffer.

PIPE & FILTER STYLE / 02

PIPE & FILTER STYLE / 03

SHARED DATA STYLE /01

• In data centred style (also called data centred
architecture), data is exchanged between
components through shared storage.

• The computational components are coordinated,
with subroutines to a main program sequences
through them.

• Data is then communicated between the
components through shared storage.

• Communication between the computational
components and shared data is an unconstrained
read-write protocol.

SHARED DATA STYLE /02

Data store:

• Data is centralized and

accessed frequently by

other components, which

modify data.

• The main purpose of this

style is to achieve integrality

of data.

Shared Data Components

• Different components

communicate through shared data

repositories.

• Components access a shared

data structure and are relatively

independent, in that, they interact

only through the data store.

VARIANTS OF SHARED DATA VIEW

• There are two variations of this style possible, i.e repository
and blackboard.

• Repository Architecture: the data store is passive and the

clients (software components or agents) of the data store are

active, which control the logic flow. The participating

components check the data-store for changes.

• Blackboard Architecture Style: the data store is active and its
clients are passive. Therefore the logical flow is determined by
the current data status in data store. It has a blackboard
component, acting as a central data repository, and an
internal representation is built and acted upon by different
computational elements.

REPOSITORY ARCHITECTORAL VIEW

1. The computational processes are independent and triggered by incoming

requests.

2. If the types of transactions in an input stream of transactions trigger selection of

processes to execute, then it is traditional database or repository architecture,

or passive repository.

3. This approach is widely used in DBMS, library information system, the interface

repository in CORBA, compilers, and CASE (computer aided software

engineering) environments.

Repository Architecture Style has following

advantages −

1. Provides data integrity, backup and restore

features.

2. Provides scalability and reusability of agents

as they do not have direct communication

with each other.

3. Reduces overhead of transient data between

software components.

ADVANTAGES OF REPOSITORY ARCHITECTORAL VIEW

Because of being more vulnerable to failure and data
replication or duplication, Repository Architecture Style
has following disadvantages:

1. High dependency between data structure of data
store and its agents.

2. Changes in data structure highly affect the clients.

3. Evolution of data is difficult and expensive.

4. Cost of moving data on network for distributed data

DISADVANTAGES OF REPOSITORY ARCHITECTORAL VIEW

• In Blackboard Architecture Style, the data store is active and

its clients are passive.

• The logical flow is determined by the current data status in

data store.

• It has a blackboard component, acting as a central data

repository, and an internal representation is built and acted

upon by different computational elements.

• The components interact only through the blackboard. The

data-store alerts the clients whenever there is a data-store

changes. The current state of the solution is stored in the

blackboard and processing is triggered by the state of the

blackboard.

BLACKBOARD ARCHITECTORAL VIEW

Knowledge Sources (KSn)

1. Also known as Listeners or

Subscribers are distinct and

independent units.

2. They solve parts of a problem

and aggregate partial results.

Computation/control

manages tasks and checks

the work state.

PARTS OF A BLACKBOARD ARCHITECTURE MODEL

ADVANTAGES OF BLACKBOARD ARCHITECTURE

1. Blackboard Model provides concurrency that
allows all knowledge sources to work in
parallel as they independent of each other.

2. Its scalability feature facilitates easy steps to
add or update knowledge source.

3. Further, it supports experimentation for
hypotheses and reusability of knowledge
source agents.

• The structural change of blackboard may have a
significant impact on all of its agents, as close
dependency exists between blackboard and
knowledge source.

• Blackboard model is expected to produce
approximate solution; however, sometimes, it
becomes difficult to decide when to terminate the
reasoning.

• Suffers some problems in synchronization of multiple
agents, therefore, it faces challenge in designing and
testing of the system.

DISADVANTAGES OF BLACKBOARD ARCHITECTURE

CLIENT SERVER ARCHITECTURE

• In this style, there are two component types—clients and
servers.

• A constraint of this style is that a client can only communicate
with the server, and cannot communicate with other clients.
The communication between a client component and a server
component is initiated by the client the client sends a request
for some service that the server supports.

• The server receives the request at its defined port, performs
the service, and then returns the results of the computation
to the client who requested the service.

EXAMPLE: ARCHITECTURE OF USSD MOBILE PAYMENT

• USSD is a capability of GSM network used for transferring information between

mobile phone and application.

• User requests a service by entering short code on mobile. Format of code is

standardized and content is specified for each service, the content can be

containing USSD code, from account, to account, amount, currency, target

mobile number.

• USSD gateway service provider communicates with GSM network through SS7

protocol.

EXAMPLE: ARCHITECTURE OF SMS MOBILE PAYMENT SYSTEM

• No special software has been used in this platform.

• The communication channel between user and payment network is SMS.

• A standard format is used for sending messages such as timestamp, random

number, from account, to account, amount, currency, and target mobile number.

The payer authentication is based on payer mobile number and PIN.

• Because of security problem related to PIN a safer solution is achieved by one-

time password.

• Some of mobile services which can be provided by this platform include bill

payment, financial operation like account history and funds transfer

EXAMPLE: ARCHITECTURE OF WAP/GPRS MOBILE PAYMENT SYSTEM

• Authentication of the payer is done by digital certificate, mobile phone number

and PIN.

• A URL link in mobile phone download associated certificate. Transferring of

information routed by GPRS network and WAP enabled phone.

• WAP uses a special language WML for communication Between WAP Gateway

and content on the Internet.

• The WAP Gateway converts between WML and HTML, allowing delivery of WAP

based content to a WAP capable mobile device

EXAMPLE: ARCHITECTURE OF SIM-BASED APPLICATION MOBILE PAYMENT SYSTEM

• This platform is based on application installed on SIM.

• User receives payment software and other services directly through OTA server.

When the software is successfully installed, user can send a request for

supported services onto operator.

• This request is processed in OTA server and recorded on transaction server.

REVIEW QUESTIONS

1. Define View.

2. Define viewpoint.

3. What is the difference between view and viewpoint?

4. List the various views in software architecture

5. Why multiple views are required in defining SW Architecture ?

6. How SW architecture is connected to view and viewpoint ?

7. Explain logical view with an example. Who uses this view ?

8. Explain Process (Deployment) view with an example. Who uses this view ?

9. Explain Development (Implementation) view with an example. Who uses this view ?

10. Explain physical view with an example. Who uses this view ?

11. Explain usecase view (scenario). Why is this view important ?

12. Define Structure

13. How is structure different from views ?

14. List the categories of structure

15. Define module structure

16. Define component and connector structure

17. What do you understand by Allocation structure ?

16m Question Bank

1. Define and explain the importance of various views in
a SWA

2. Define structure. List and explain various structures
considered in SWA

3. Explain with a neat diagram Kruchten’s 4+1 RUP view

4. Explain with a neat diagram Siemens 4 view

5. Explain with a neat diagram SEI view

6. Case study on following views
1. RUP 4+1

2. Siemens 4

3. SEI

	Slide 1: SOFTWARE ARCHITECTURE VIEWS
	Slide 2: DEFINITION OF SOFTWARE ARCHITECTURE VIEW
	Slide 3: EXAMPLES OF SW ARCHITECTURE VIEWS
	Slide 4
	Slide 5: VIEWS OF SOFTWARE ARCHITECTURE
	Slide 6: C & C ARCHITECTURE VIEW
	Slide 7: COMPONENTS
	Slide 8: WHAT IS A CONNECTOR?
	Slide 9: MODULES
	Slide 10: MODULE STRUCTURES
	Slide 11: STYLES FOR C&C VIEW
	Slide 12: PIPE & FILTER STYLE / 01
	Slide 13: PIPE & FILTER STYLE / 02
	Slide 14: PIPE & FILTER STYLE / 03
	Slide 15: SHARED DATA STYLE /01
	Slide 16: SHARED DATA STYLE /02
	Slide 17: VARIANTS OF SHARED DATA VIEW
	Slide 18: REPOSITORY ARCHITECTORAL VIEW
	Slide 19: ADVANTAGES OF REPOSITORY ARCHITECTORAL VIEW
	Slide 20: DISADVANTAGES OF REPOSITORY ARCHITECTORAL VIEW
	Slide 21: BLACKBOARD ARCHITECTORAL VIEW
	Slide 22: PARTS OF A BLACKBOARD ARCHITECTURE MODEL
	Slide 23: ADVANTAGES OF BLACKBOARD ARCHITECTURE
	Slide 24: DISADVANTAGES OF BLACKBOARD ARCHITECTURE
	Slide 25: CLIENT SERVER ARCHITECTURE
	Slide 26: EXAMPLE: ARCHITECTURE OF USSD MOBILE PAYMENT
	Slide 27: EXAMPLE: ARCHITECTURE OF SMS MOBILE PAYMENT SYSTEM
	Slide 28: EXAMPLE: ARCHITECTURE OF WAP/GPRS MOBILE PAYMENT SYSTEM
	Slide 29: EXAMPLE: ARCHITECTURE OF SIM-BASED APPLICATION MOBILE PAYMENT SYSTEM
	Slide 30: REVIEW QUESTIONS
	Slide 31: 16m Question Bank

