
FINITE STATE MACHINES IN SOFTWARE
ENGINEERING:

Simplifying Complex Systems with States and Transitions

ECC 811 – SOFTWARE ENGINEERING
Monday, July 2, 2025

WHAT IS A FINITE STATE MACHINE?

1. Finite State Machine(FSM) is a
mathematical model describing a system
with finite states, transitions triggered by
events, and associated actions.

2. Real-World Examples of FSM:
• Traffic lights (Red → Yellow → Green)
• Vending machines (Idle → Payment →

Dispense)
3. Purpose: FSMs are powerful tools for

modeling complex systems, especially those
exhibiting sequential logic and distinct
states.

The benefits of using FSMs in Software engineering
are:
1. Clarity: Visualize complex workflows (e.g., UI

flows, payment gateways).

2. Debugging: Predictable behavior → easier error
tracing.

3. Maintainability: Isolate state-specific logic.

WHY FSMS MATTER IN SOFTWARE ENGINEERING

CORE FSM COMPONENTS

FSMs have four main components:
1. Visual Diagram:

[States] ←(Transitions)→ [States]

2. States: System configurations
Example: Locked, Unlocked).

3. Transitions: State changes triggered by
events

4. Actions: Operations during transitions (e.g.,
validate_password()).

TYPES OF FINITE STATE MACHINES

TYPE KEY RULE USE CASE

Mealy Action on transition Network controllers

Moore Action on state entry Hardware systems

DFA/NFA Single/Multiple paths
per event

Parsers, compilers

MODELING FSMS: STATE DIAGRAMS

1. Example Diagram:
• [Locked] -- insert_coin --> [Unlocked] / unlock_door()
• [Unlocked] -- timeout --> [Locked] / lock_door()

2. Best Practices:
• Use ➔ for transitions.
• Label: Event [Guard] / Action.
• Tool Suggestion: Draw.io, PlantUML.

MODELING FSMS: STATE TRANSITION TABLES

Current State Event Next State Action
Locked insert_coin Unlocked unlock_door
Unlocked timeout Locked lock_door

When to Use: State transition tables are used in complex FSMs
with many states.

IMPLEMENTING FSMS: STATE PATTERN (OOP)

Java:
interface State {

 void handleEvent(Context context);

}

class LockedState implements State {

 public void handleEvent(Context ctx) {

 unlockDoor();

 ctx.setState(new UnlockedState());

 }

}

Pros: Encapsulation, extensibility.

IMPLEMENTING FSMs: STATE TABLES (DATA-DRIVEN)

Code Snippet (Python):

fsm = {

 ("Locked", "insert_coin"): ("Unlocked",
unlock_door),

 ("Unlocked", "timeout"): ("Locked", lock_door),

}

Runtime engine:

current_state, event = "Locked", "insert_coin"

next_state, action = fsm[(current_state, event)]

action()

Pros: Decouples logic from code; easy to modify.

FSM: TOOLS & LIBRARIES

1. Popular Tools:
• JavaScript: XState
• Python: Transitions
• C#: Stateless

2. Why Use Them:
• Built-in guards/hierarchical states.
• Visual debugging.

REAL-WORLD EXAMPLE: LOGIN WORKFLOW

1. States:
 INITIAL → INPUT → VALIDATING → SUCCESS/ERROR
2. Events:
 submit_form(), validation_success(), validation_failed()
3. Diagram:
 Linear flow with error recovery.

REAL-WORLD EXAMPLE: PAYMENT GATEWAY

1. States:
PENDING → PROCESSING → COMPLETED/FAILED → REFUND

2. Critical Events:
payment_received, timeout, refund_requested

ADVANTAGES OF FSM

The advantages of FSM in Software Engineering
are:
1. Modularity: Isolate state logic.
2. Testability: States/transitions are unit-

testable.
3. Scalability: Handle new states without

rewriting core logic.

CHALLENGES & SOLUTIONS

Challenges:
• State explosion (too many transitions).
• Concurrency limitations.

Solutions:
• Hierarchical FSMs: Nest states (e.g., PAUSED within

GAME_RUNNING).
• Statecharts: Advanced modeling (parallel states, history).

SUMMARY

1. FSMs simplify event-driven systems.
2. Choose between

• Mealy (transition actions) or
• Moore (state actions).

3. Implement via
• State Pattern (OOP) or
• State Tables (data-driven).

	Slide 1: FINITE STATE MACHINES IN SOFTWARE ENGINEERING: Simplifying Complex Systems with States and Transitions
	Slide 2: WHAT IS A FINITE STATE MACHINE?
	Slide 3: WHY FSMS MATTER IN SOFTWARE ENGINEERING
	Slide 4: CORE FSM COMPONENTS
	Slide 5: TYPES OF FINITE STATE MACHINES
	Slide 6: MODELING FSMS: STATE DIAGRAMS
	Slide 7: MODELING FSMS: STATE TRANSITION TABLES
	Slide 8: IMPLEMENTING FSMS: STATE PATTERN (OOP)
	Slide 9: IMPLEMENTING FSMs: STATE TABLES (DATA-DRIVEN)
	Slide 10: FSM: TOOLS & LIBRARIES
	Slide 11: REAL-WORLD EXAMPLE: LOGIN WORKFLOW
	Slide 12: REAL-WORLD EXAMPLE: PAYMENT GATEWAY
	Slide 13: ADVANTAGES OF FSM
	Slide 14: CHALLENGES & SOLUTIONS
	Slide 15: SUMMARY

