FINITE STATE MACHINES IN SOFTWARE
ENGINEERING:

Simplifying Complex Systems with States and Transitions

ECC 811 -SOFTWARE ENGINEERING
Monday, July 2, 2025

WHAT IS A FINITE STATE MACHINE?

1. Finite State Machine(FSM) is a
mathematical model describing a system
with finite states, transitions triggered by
events, and associated actions.

2. Real-World Examples of FSM:

QQ or01

* Traffic lights (Red > Yellow > Green) 7
* Vending machines (ldle » Payment > P %ﬁ}* wors
Dispense) ;g\ \ocly: s/ | /\sl
3. Purpose: FSMs are powerful tools for | ﬁf{} ;‘%5
modeling complex systems, especially those 0y ..f/Ngséed\-.. T
exhibiting sequential logic and distinct s E“‘{f,g,/ - WooLonon

states. N /'

WHY FSMS MATTER IN SOFTWARE ENGINEERING

The benefits of using FSMs in Software engineering
are:

1. Clarity: Visualize complex workflows (e.g., Ul
flows, payment gateways).

2. Debugging: Predictable behavior > easier error
tracing.

3. Maintainability: Isolate state-specific logic.

CORE FSM COMPONENTS

FSMs have four main components:
1. Visual Diagram:
[States] «(Transitions)~> [States]

2. States: System configurations
Example: Locked, Unlocked).

3. Transitions: State changes triggered by
events

4. Actions: Operations during transitions (e.g.,
validate_password()).

TYPES OF FINITE STATE MACHINES

TYPE KEY RULE USE CASE

Mealy Action on transition |Network controllers

Moore Action on state entry |Hardware systems

DFA/NFA Single/Multiple paths [Parsers, compilers
per event

MODELING FSMS: STATE DIAGRAMS

1. Example Diagram:
* [Locked] -- insert_coin --> [Unlocked] / unlock_door()
* [Unlocked] -- timeout --> [Locked] / lock_door()

2. Best Practices:

* Use = for transitions.

* Label: Event [Guard] / Action.

* Tool Suggestion: Draw.io, PlantUML.

MODELING FSMS: STATE TRANSITION TABLES

Current State |Event Next State Action
Locked Insert_coin Unlocked unlock door
Unlocked timeout Locked lock door

When to Use: State transition tables are used in complex FSMs
with many states.

IMPLEMENTING FSMS: STATE PATTERN (OOP)

Java:
interface State {
vold handleEvent (Context context);
}
class LockedState implements State {
public void handleEvent (Context ctx) {
unlockDoor () ;
ctx.setState (new UnlockedState());

J

Pros: Encapsulation, extensibility .

IMPLEMENTING FSMs: STATE TABLES (DATA-DRIVEN)

Code Snippet (Python):

fsm = {
("Locked", "insert coin"): ("Unlocked",
unlock door), -
("Unlocked", "timeout"): ("Locked", lock door),

}

Runtime engine:

current state, event = "Locked", "insert coin"
next state, action = fsm][(current state, event)]
action ()

Pros: Decouples logic from code; easy to modify.

FSM: TOOLS & LIBRARIES

1. Popular Tools:
* JavaScript: XState
* Python: Transitions
* C#. Stateless

2. Why Use Them:
* Built-in guards/hierarchical states.
* Visual debugging.

REAL-WORLD EXAMPLE: LOGIN WORKFLOW

1. States:

INITIAL > INPUT > VALIDATING > SUCCESS/ERROR
2. Events:

submit_form(), validation_success(), validation_failed()
3. Diagram:

Linear flow with error recovery.

REAL-WORLD EXAMPLE: PAYMENT GATEWAY

1. States:
PENDING > PROCESSING » COMPLETED/FAILED » REFUND

2. Critical Events:
payment_received, timeout, refund_requested

ADVANTAGES OF FSM

The advantages of FSM in Software Engineering
are:

1. Modularity: Isolate state logic.

2. Testability: States/transitions are unit-
testable.

3. Scalability: Handle new states without
rewriting core logic.

CHALLENGES & SOLUTIONS

Challenges:
* State explosion (too many transitions).
* Concurrency limitations.

Solutions:

* Hierarchical FSMs: Nest states (e.g., PAUSED within
GAME_RUNNING).

* Statecharts: Advanced modeling (parallel states, history).

SUMMARY

1. FSMs simplify event-driven systems.

2. Choose between
* Mealy (transition actions) or
* Moore (state actions).

3. Implementvia
e State Pattern (OOP) or
* State Tables (data-driven).

	Slide 1: FINITE STATE MACHINES IN SOFTWARE ENGINEERING: Simplifying Complex Systems with States and Transitions
	Slide 2: WHAT IS A FINITE STATE MACHINE?
	Slide 3: WHY FSMS MATTER IN SOFTWARE ENGINEERING
	Slide 4: CORE FSM COMPONENTS
	Slide 5: TYPES OF FINITE STATE MACHINES
	Slide 6: MODELING FSMS: STATE DIAGRAMS
	Slide 7: MODELING FSMS: STATE TRANSITION TABLES
	Slide 8: IMPLEMENTING FSMS: STATE PATTERN (OOP)
	Slide 9: IMPLEMENTING FSMs: STATE TABLES (DATA-DRIVEN)
	Slide 10: FSM: TOOLS & LIBRARIES
	Slide 11: REAL-WORLD EXAMPLE: LOGIN WORKFLOW
	Slide 12: REAL-WORLD EXAMPLE: PAYMENT GATEWAY
	Slide 13: ADVANTAGES OF FSM
	Slide 14: CHALLENGES & SOLUTIONS
	Slide 15: SUMMARY

